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ABSTRACT         

Multi-Vehicle Anticipation-Based Models for Describing Driver Behaviour in 

Heterogeneous and Disorderly Traffic Conditions 

by 

Sangram Krishna Nirmale 

Department of Civil Engineering, Indian Institute of Science, Bengaluru 

Supervisor: Prof. Abdul Rawoof Pinjari 

Driver behaviour models are widely used in the traffic engineering literature and practice. They 

are used for understanding drivers’ manoeuvring decisions in traffic streams. They also form 

the building blocks of microscopic traffic simulation tools, which are employed for traffic flow 

analysis and capacity estimation necessary for the design and operation of traffic facilities and 

evaluation of operational strategies. Most driver behaviour models in the literature assume 

homogeneous and orderly traffic conditions, characterised by homogeneity (i.e., only 

passenger cars comprise the traffic streams) and orderliness (i.e., vehicles move only in the 

longitudinal direction, except when changing lanes). Models developed with such assumptions 

cannot be applied to analyse heterogeneous, disorderly (HD) traffic conditions. This is because 

HD traffic streams, unlike homogeneous traffic streams, comprise a wide variety of vehicle 

classes with considerably different physical and operational characteristics. Moreover, driving 

in HD traffic streams is characterised by weaker lane discipline due to a greater extent of lateral 

movements than that in homogeneous traffic streams. 

This dissertation aims to formulate and apply driver behaviour models for HD traffic 

streams on uninterrupted traffic facilities while considering the following aspects – (1) the 

multi-vehicle anticipation (MVA) behaviour, where drivers’ manoeuvring decisions are 

influenced by multiple vehicles around them, as opposed to a single lead vehicle ahead, (2) the 

treatment of driver behaviour as a combination of different manoeuvring decisions, such as the 

decision of whether to accelerate, decelerate, or remain in same speed (represented by a discrete 

variable) and the decision of the extent of acceleration or deceleration (represented by 

continuous variables) – as opposed to a single, continuous variable representing all these facets 

of driver behaviour, (3) the incorporation of stochasticity due to the errors drivers make in 

perceiving the traffic environment, and (4) the consideration of drivers’ intentions (which are 



 

 

ix 

 

typically latent to the analyst) and two-dimensional movements of vehicles simultaneously 

while also incorporating MVA behaviour. Specifically, the following driver behaviour models 

are formulated and applied to understand driver behaviour in empirical trajectory datasets from 

Chennai (HD traffic) and California (homogeneous traffic): 

1. The first model presented in this dissertation is an MVA-based discrete-continuous choice 

modelling framework to model vehicles’ longitudinal movements in HD traffic streams. In 

this model, driver behaviour at a given time instance is treated as a combination of (a) the 

driver’s choice of whether to accelerate, decelerate, or maintain a constant speed – 

represented by a discrete variable – and (b) the extent of acceleration or deceleration – 

represented by continuous variables. The discrete and continuous variables representing 

driver behaviour are modelled using a simultaneous econometric framework. The proposed 

model is used to examine driver behaviour in the HD traffic dataset from Chennai. The 

empirical analysis reveals the significance of the MVA effect on driver behaviour. 

Specifically, drivers consider the relative speeds and space gaps with respect to multiple 

vehicles within an influence zone around their vehicle. In addition, it is found that the 

influence of the traffic environment on drivers’ discrete choices (whether to accelerate, 

decelerate, or maintain a constant speed) is not the same as that on their choices of how 

much to accelerate or decelerate.  

2. The second model is an extension of the above model to recognise the panel data nature of 

vehicle trajectory datasets typically used for estimating the parameters of driver behaviour 

models. This model recognises the role of vehicle- and driver-specific unobserved factors 

(latent to the analyst), such as aggressiveness that influence driving behaviour, and such 

influence persists across all observations of a vehicle. Doing so helps in reducing the 

confounding effects of unobserved factors when the proposed model is applied to different 

datasets to compare driving behaviour in different traffic streams. The panel data model is 

used to understand and compare longitudinal driving behaviour between the HD traffic 

dataset of Chennai and the homogeneous traffic dataset of California. The empirical 

analysis reveals the presence of MVA effect on driving behaviour in the homogeneous 

traffic setting, too. However, drivers in the HD traffic stream are influenced by more 

vehicles in their vicinity than those in the homogeneous traffic stream. 

3. In the third model formulation, a mixed multinomial logit-based framework is developed 

to recognise stochasticity in driver behaviour models due to drivers’ errors in perceiving 
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the traffic environment. For this model, an econometric analysis is undertaken to evaluate 

two different ways of specifying errors in variables in discrete choice models – additive 

errors and multiplicative errors. It is shown that the multiplicative specification of errors 

has a better behavioural basis and allows better identification of parameters representing 

variability due to drivers’ perception errors. An application of this model to the HD traffic 

dataset reveals different levels of variability due to errors in the perception of different 

traffic environment variables. It is found that drivers may pay greater attention to (which 

results in lower variability in) perceiving space gaps and relative speeds with respect to 

vehicles directly ahead of them than those not directly ahead. 

4. The fourth and final model formulation is a two-dimensional, MVA, and multi-stimuli-

based latent class framework to analyse motorcyclists’ two-dimensional movements in HD 

traffic streams. This formulation conjectures that drivers manage their cognitive load by 

dividing their driving decisions into two steps – (a) higher-level, strategic intentions (of 

whether to accelerate, decelerate, or maintain a constant speed and whether to steer to the 

left of, right of, or keep straight along the longitudinal direction), which are not fully 

observable from vehicle trajectories (hence latent to the analyst), and (b) lower-level, 

tactical decisions that can be observed in vehicle trajectories, such as the specific angle of 

movement and the specific extent of acceleration or deceleration executed. When applied 

to the HD traffic dataset of Chennai, the proposed model suggests that drivers’ higher-level 

intentions are more strongly influenced by the microscopic traffic environment variables 

than their lower-level decisions, perhaps because drivers invest a greater extent of cognitive 

resources for making higher-level intentions than that for lower-level decisions.  

Finally, a traffic simulator is developed to simulate traffic streams using the models developed 

in this dissertation. The simulation experiments using this simulator demonstrate that all the 

microscopic driver behaviour models developed in this dissertation reflect the typically 

observed macroscopic properties of vehicular traffic steams.  

 

Keywords: heterogeneous disorderly traffic conditions, homogeneous traffic conditions, 

driver behaviour, multi-vehicle anticipation, discrete-continuous models, perception error, 

two-dimensional movements
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CHAPTER 1 INTRODUCTION 

1.1 MOTIVATION  

Driver behaviour models are widely used in traffic engineering literature and practice for 

understanding and describing drivers’ manoeuvring decisions in vehicular traffic streams. They 

also form the building blocks of traffic microsimulation tools, which are used for traffic flow 

analysis, traffic safety analysis, traffic emission estimation, traffic control studies, etc.  

Most driver behaviour models in the literature are built for homogeneous traffic 

conditions typically observed in countries such as Australia, the United States, Germany, and 

the Netherlands. Such homogeneous traffic streams are dominated mostly by passenger cars 

with similar physical and operational characteristics. Also, vehicles in homogeneous traffic 

streams follow lane discipline and perform limited lateral movements, primarily for lane 

changing. Various driver behaviour models have been developed to analyse homogeneous 

traffic streams. However, they cannot be directly applied to analyse the heterogeneous, 

disorderly (HD) traffic conditions typically observed in Asian countries such as India, Pakistan, 

China, Bangladesh, and Indonesia. This is because the characteristics of HD traffic streams 

tend to be significantly different from those of homogeneous traffic streams. HD traffic streams 

comprise a wide variety of vehicle classes (such as passenger cars, motorcycles, buses, trucks, 

three-wheeled auto-rickshaws, and non-motorised vehicles) with considerably different 

physical and operational characteristics. Most of these classes have substantial representation 

in the traffic streams. Moreover, as opposed to vehicles in homogeneous traffic streams, 

vehicles in HD traffic exhibit weak to no lane discipline, a greater extent of lateral movements, 

and behaviours such as staggered following and squeezing in the gaps between vehicles 

(Asaithambi et al., 2016).  

Furthermore, regardless of whether the traffic condition is homogeneous or 

heterogeneous, drivers’ decisions are driven by various factors, including human factors, 

roadway geometry, and traffic environment. Consideration of human factors such as reaction 

time, desired speed, desired spacing, perception errors, and multi-vehicle anticipation (MVA) 

are necessary for a realistic representation of driver behaviour (Hamdar, 2012; Treiber and 

Kesting, 2013; Saifuzzaman and Zheng, 2014). Recent studies have also demonstrated the 

significance of incorporating human factors in the microscopic driver behaviour modelling 

framework to comprehensively describe drivers’ decision-making process (Saifuzzaman et al., 

2015; H. van Lint et al., 2016; Ali et al., 2019; Sharma et al., 2019; Calvert et al., 2020). One 
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such human factor is multi-vehicle anticipation (or MVA, also known as spatial anticipation), 

which refers to a driver’s ability to take several vehicles around their vehicle into account for 

making their driving decisions. In this context, previous studies argue that considering a single 

lead vehicle as the only influencer of the subject vehicle’s (SV) driving behaviour may not 

adequately represent SV’s driving decisions (Bexelius, 1968; Lenz et al., 1999; Hoogendoorn 

and Ossen, 2006; Hoogendoorn et al., 2006; Treiber et al., 2006; Peng and Sun, 2010; Zhang, 

2014). Yet, the literature on driver behaviour in both HD traffic and homogeneous traffic 

settings has not paid adequate attention to the incorporation of MVA. 

Another human factor – drivers’ error in perceiving traffic environment variables – has 

also been recognised as an essential element for improving the realism of driver behaviour 

models. However, most studies that consider driver’s perception error are in the context of a 

single-leader car-following setting, where the subject vehicle is assumed to follow a single lead 

vehicle ahead of it and in the context of homogeneous traffic conditions. However, it is perhaps 

much more important to consider drivers’ perception errors while analysing driver behaviour 

in HD traffic streams, for drivers may have to process information from many more sources in 

HD traffic settings (because of MVA) than in homogeneous traffic settings. Even in the context 

of homogeneous traffic conditions, the influence of MVA and drivers’ perception errors are 

still underexplored. 

Additionally, lateral movements of vehicles are typically treated in the current literature 

as a part of lane-changing manoeuvres, which are modelled separately from longitudinal 

movements. This is again a feature common to models describing homogeneous traffic streams 

with lane discipline. However, in HD traffic streams with weak (or without) lane discipline, a 

considerable portion of vehicular movements tend to be two-dimensional (2D), with the 

simultaneity of longitudinal and lateral movements – particularly for motorised two-wheelers 

and during slow-moving and high vehicle density conditions. Therefore, it is likely that a 2D 

characterisation of vehicular movements, where both longitudinal and lateral movements are 

considered simultaneously, might better represent driving behaviour in HD traffic streams. 

In view of the above discussion, the overarching goal of this dissertation is to develop 

driver behaviour models for HD traffic streams on uninterrupted traffic facilities. The proposed 

driver behaviour models will incorporate the effect of MVA and driver’s perception errors and 

consider the 2D movements of drivers in HD traffic conditions.  
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The remainder of the chapter is organised in the following manner. Section 1.2 provides 

a discussion of the gaps in the literature. Section 1.3 outlines the objectives of this dissertation. 

The overall structure and contributions of this thesis are discussed in Section 1.4. Finally, 

Section 1.5 identifies the limitations in the scope of the dissertation.    

1.2 GAPS IN LITERATURE 

Chapter 2 presents a detailed literature review for the reader to understand that a substantial 

amount of previous research has focused on modelling driver behaviour in HD traffic streams, 

even if it is not as much as the body of literature on homogeneous traffic streams. However, 

there are still research needs in this area. Specifically, we identify four research gaps, which 

are discussed next. 

1.2.1 Inadequate Consideration of the MVA Effect while Modelling Driver Behaviour in HD 

Traffic Streams 

Our synthesis of the literature revealed that most studies on modelling driver behaviour for HD 

traffic conditions consider only the effect of a single leader on the subject vehicle. Some studies 

have considered the influence of multiple vehicles positioned ahead of the subject vehicle only 

in the longitudinal direction  (Jin  et al., 2010; Li et al., 2015; Li et al., 2016). However, vehicles 

that are positioned on either side of the subject vehicle, as well as those positioned ahead in an 

oblique direction (i.e., vehicles that are not directly ahead), can also influence the driver’s 

driving behaviour. This creates a need to consider the effect of multiple surrounding vehicles 

(MVA effect) to model driver behaviour in HD traffic conditions.  

1.2.2 Limited Efforts to Consider Drivers’ Discrete and Continuous Decisions Separately but 

Model Them Simultaneously   

Most driver behaviour modelling studies treat the drivers’ decisions – whether to 

accelerate/decelerate/maintain a constant speed and the decisions on the extent of acceleration 

or deceleration – all as a single continuum. A single variable or distribution is used to represent 

all these decisions by treating a positive rate of change of speeds as acceleration and a negative 

rate of change of speed as deceleration. To the best of the authors’ knowledge, only one study 

(Koutsopoulos and Farah, 2012) separates the decision to accelerate, decelerate or maintain a 

constant speed (i.e., the discrete decisions, or decisions that may be represented as a discrete 

variable) and the extent of these decisions such as the extent of acceleration or deceleration 

(i.e., the continuous decisions, or decisions that may be represented as continuous variables). 

Although the discrete decisions (of whether to accelerate, decelerate, or maintain a constant 
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speed) and the continuous decisions (of how much to accelerate or decelerate) occur in tandem 

and without a discernible time lag, it is likely that the cognitive efforts required to decide 

whether to accelerate, decelerate, or remain in same speed are different from the cognitive 

efforts needed to determine how much to accelerate or decelerate. Besides, the factors 

influencing the decision on whether to accelerate or decelerate might be different (or have a 

different influence on) than the factors influencing the extent of acceleration or deceleration. 

Hence, there is a need to treat discrete decisions (accelerate, decelerate, or maintain a constant 

speed) and continuous decisions (how much to accelerate or decelerate) separately and model 

them as separate entities. At the same time, it is necessary to model all these decisions in a 

simultaneous manner considering any dependencies among them. This is because several 

unobserved driver behaviour factors can affect both discrete and continuous decisions of 

drivers, causing dependency between the mathematical constructs employed to model the 

decisions. For example, it is possible that common unobserved factors that increase the 

propensity for taking a discrete decision can also increase/decrease the extent of that decision. 

Therefore, ignoring the dependency due to unobserved factors, if present, can potentially lead 

to bias in parameter estimates (because of the error terms being correlated to explanatory 

variables), distorted interpretations/conclusions, and inferior model fit. These issues motivate 

the need for joint modelling of the discrete and continuous variables used to represent the above 

decisions.  

To be sure, Koutsopoulos and Farah (2012) also jointly analyse the decisions of 

acceleration or deceleration along with the extent of acceleration or deceleration; however, 

their model was developed for homogeneous traffic conditions and considered the influence of 

a single lead vehicle only. To the best of the authors’ knowledge, there has not been much 

research on modelling driver behaviour considering MVA in HD traffic streams, while treating 

the discrete decisions and the extent of these decisions as separate but simultaneous (joint) 

decisions with interdependencies.  

1.2.3 Inadequate Attention to (and Lack of Methods for) Modelling Drivers’ Perception 

Errors in MVA-Based Driver Behaviour Models 

Driver behaviour models typically assume that drivers perceive their traffic environment in the 

form of spacing and the relative speed with respect to vehicles around them and make their 

manoeuvring decisions on their perceived values. Since they need to make their manoeuvring 

decisions in a relatively short time in a continuously evolving environment, they might make 
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errors in perceiving the traffic environment. At the same time, the analyst’s measurement of 

the traffic environment from trajectory datasets used to build driver behaviour models may not 

be the same as what the drivers perceive. The gap between the perceived and measured values 

results in errors in the traffic environment variables used in the models. Such errors in 

variables (EIV) introduce additional stochasticity in the models used to describe driver 

behaviour. It is well recognised in the statistical/econometric literature that ignoring errors in 

explanatory variables can potentially result in biased parameter estimates and distorted 

interpretations.  

Besides the statistical/econometric issues, consideration of drivers’ perception errors 

has long been recognised as an essential element for improving the realism of driver behaviour 

models. However, most studies that consider driver’s perception error are in the context of a 

single-leader car-following situation, and most studies on this topic have been in the context of 

homogeneous traffic conditions. On the contrary, the sources of influence (or stimuli) on a 

subject vehicle are likely to be more than a single vehicle in HD traffic streams. In such 

scenarios, where drivers process multiple sources of information, perception errors might play 

an influential role. Besides, given the amount of information to be processed in very short time 

frames, drivers may deliberately pay greater attention to some elements of the traffic 

environment and lower attention to some other elements. That is, they might prioritize which 

elements to perceive carefully and which ones to not pay significant attention to and allocate 

their cognitive efforts accordingly. Therefore, it is important to consider the driver’s perception 

error in a multi-stimuli-based driver behaviour model in HD traffic streams. 

There are methodological challenges in recognising stochasticity or errors in variables 

(EIV) due to drivers’ perception errors in driving behaviour models. One methodological 

challenge is related to the specification of the errors in variables. Most literature on 

accommodating EIV does so through an additive specification of errors in the variables. 

Applied to drivers’ perception errors, an additive specification implies that the drivers’ errors 

do not depend on the magnitude of the physical quantity they perceive (e.g., spacing, relative 

speed). As we will discuss and demonstrate in Chapter 5, the additive approach to specifying 

EIVs does not help in identifying variability due to errors in variables in as many variables as 

the analyst would prefer, particularly if the driver behaviour models are set up as discrete choice 

models. Besides, literature in the psychophysics of human perception suggests that errors in 

human perception of physical quantities depend on the magnitude of the quantity being 

perceived. In this context, only a handful of studies explore the multiplicative error 
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specification, where the error term specific to a variable is multiplied by the measurement of 

that variable. Hence, there is a substantial scope to explore the value of multiplicative 

specifications for drivers’ perception errors in driver behaviour models.  

1.2.4 Limited Attention to Incorporating Drivers’ 2D Movement in HD Traffic Streams while 

also Considering Drivers’ Intentions and the MVA Effect 

Much of the driver behaviour modelling literature focuses on modelling drivers’ 

acceleration/deceleration decisions in the longitudinal direction only (i.e., the direction of 

traffic flow). Lateral movements are considered as discrete events primarily motivated by lane 

changing or turning needs. This may be because of the focus on modelling driver behaviour in 

homogeneous traffic conditions. As discussed earlier, in HD traffic streams with weak (or 

without) lane discipline, a considerable portion of vehicular movements tends to be 2D, with 

the simultaneity of longitudinal and lateral movements. Therefore, it is likely that a 2D 

characterisation of vehicular movements, where both longitudinal and lateral movements are 

considered simultaneously, might better represent driving behaviour in HD traffic streams. 

 Furthermore, the driving actions observed in the vehicle trajectory datasets typically 

available to the analysts do not reveal the drivers’ actual intentions. They only reveal the final 

driving actions taken on the road, in the form of the acceleration/deceleration extents and the 

angle of the movement. It is worth noting here that the extent of acceleration/deceleration and 

2D movements executed by drivers while travelling on the road are usually a consequence of 

drivers’ intentions to accelerate, decelerate, or maintain a constant speed and to steer to the left 

of, right of, or straight along the longitudinal axis. However, small acceleration/deceleration 

values and slight angular deviations from the direction of traffic flow are common even if the 

drivers intend to maintain a constant speed state and to move in a straight path, respectively. 

This is due to the difficulty in maintaining a constant speed and avoiding any lateral movement 

(i.e., angular movement). Nevertheless, the actual intentions of drivers are unobserved or latent 

to the analyst, and only the outcome of the driver’s actions (such as the extent of acceleration 

and angular deviation from the direction of traffic flow) can be observed in the vehicle 

trajectory datasets. Therefore, it is useful to consider drivers’ intentions while modelling their 

2D movements. While some literature exists on modelling drivers’ intents (that are latent to 

the analyst) in homogeneous traffic streams, none exists on modelling the driver intents in HD 

traffic streams while considering 2D movements.  
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Driving decisions in HD traffic streams involve multifaceted decisions such as: (a) the 

intention to accelerate, decelerate, or maintain a constant speed, (b) the extent of intended 

acceleration or deceleration, (c) the intention to steer to the left of, right of, or straight along 

the traffic flow direction, and (d) the specific angular direction of movement. However, from 

a cognitive science standpoint, humans are endowed with a limited amount of cognitive 

resources, such as working memory they need to store and process information for making 

their decisions (Sweller, 1988). Therefore, drivers might allocate their cognitive resources 

optimally to quickly make their manoeuvring decisions. Specifically, given the multifaceted 

decisions drivers need to make in a short timeframe and the complexity of the traffic 

environment around them, it is plausible that they break down their decision-making into 

manageable steps for cognitive ease. In this context, there is scope to explore if analysing 

drivers’ intents (which are latent to the analyst) first, followed by the specific actions they take, 

can help in filling this gap (see Choudhury (2007), Koutsopoulos and Farah (2012), and 

Choudhury and Islam (2016) for some work in this direction). For instance, it may be that 

higher-level, strategic decisions – such as the intentions of whether to accelerate, decelerate, or 

maintain a constant speed and whether to steer to the left of, right of, or keep straight along the 

longitudinal direction – are made first, followed by lower-level, tactical decisions – such as 

exactly how much to accelerate or decelerate and which specific angular direction to move 

along.  

Finally, as discussed in detail in our literature review in Chapter 2, while many of the 

above-discussed aspects may have been considered individually in some studies, we are not 

aware of driver behaviour models that consider 2D movements and latent intents 

simultaneously while also incorporating the MVA effect for analysing driver behaviour in HD 

traffic streams.  

1.3 OBJECTIVES OF THE DISSERTATION 

The overarching goal of this dissertation is to develop driver behaviour models for HD traffic 

streams on uninterrupted traffic facilities while considering the following aspects –  (1) the 

MVA behaviour, where drivers’ manoeuvring decisions are influenced by multiple vehicles 

around them, as opposed to a single lead vehicle ahead (2) the treatment of driver behaviour as 

a combination of different manoeuvring decisions, such as the decision of whether to 

accelerate, decelerate, or remain in same speed and the decision of the extent of acceleration 

or deceleration (as opposed to a single, continuous variable representing the driver behaviour), 
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(3) the incorporation of stochasticity due to drivers’ perception errors, and (4) the consideration 

of 2D movements and driver’s intentions (latent to the analyst) simultaneously while also 

incorporating MVA behaviour. To this end, the methodological objectives of this dissertation 

are as follows: 

M1: To develop a discrete-continuous choice modelling framework for describing car 

drivers’ longitudinal movements in HD traffic conditions. This objective serves the 

following two purposes: (1) the consideration of the MVA effect while modelling driver 

behaviour in HD traffic streams, and (2) the consideration of the driver’s discrete 

decisions (i.e., the decision of whether to accelerate, decelerate, or maintain a constant 

speed, represented as a discrete variable) and continuous decisions (i.e., the extents of 

acceleration and deceleration, represented as continuous variables) separately but also 

model them simultaneously. 

M2: To enhance the above-mentioned discrete-continuous modelling framework to 

recognise subject vehicle- and driver-specific unobserved factors that influence driver 

behaviour.  

M3: To incorporate drivers’ perception errors for variables describing the traffic 

environment in discrete choice-based models of driver behaviour. And to evaluate two 

different ways of specifying stochasticity due to drivers’ errors in their perception of 

the traffic environment – additive stocasticity and multiplicative stochasticity.  

M4: To develop an MVA-based latent class framework to simultaneously model 2D 

movements of motorised two-wheelers. And to develop a latent class framework to 

incorporate the MVA effect and the driver’s intentions (those are latent to the analyst) 

along two dimensions – (a) the intent to accelerate, decelerate, or maintain a constant 

speed, and (b) the intent to steer to the left of, right of, or straight along the longitudinal 

direction. 

The substantive objectives of this dissertation are as follows: 

S1: To demonstrate the importance of MVA using the model formulated for objective 

M1 in two different empirical settings – (1) an HD traffic stream setting using a 

trajectory dataset from the city of Chennai, India and (2) a homogeneous traffic stream 

setting using a trajectory dataset from the United States of America (USA). Another 
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objective is to compare and contrast car driver behaviour between HD and 

homogeneous traffic conditions using these two trajectory datasets.  

S2: To apply the model formulated for objective M1 to test whether the factors 

influencing the decision to accelerate or decelerate are different (or have a different 

influence on) than the factors influencing the extent of acceleration or deceleration. 

S3: To apply the model formulated for objective M3 to evaluate the importance of 

incorporating drivers’ perception errors in traffic environment variables vis-à-vis 

allowing unobserved heterogeneity in drivers’ response to those variables in driver 

behaviour models. 

S4: To apply the model formulated for objective M4 to test whether the extent of 

cognitive efforts invested for making higher-level decisions (drivers’ intent to 

accelerate, decelerate, or maintain a constant speed, and intent to steer to the left of, 

right of, or straight along the longitudinal direction) are different from those invested 

for lower-level decisions (decisions of exactly how much to accelerate or decelerate 

and which specific angular direction to move along). 

S5: To evaluate the driver behaviour models developed in this dissertation for their 

ability to mimic the macroscopic traffic flow properties of uninterrupted traffic streams 

observed in HD traffic conditions. To achieve this, another objective is to develop a 

traffic simulator for simulating HD traffic streams using the proposed driver behaviour 

models.   

1.4 THESIS OUTLINE AND CONTRIBUTIONS 

The rest of this dissertation is organised into seven additional chapters as follows: 

Chapter 2 provides a detailed review of MVA-based driver behaviour models 

developed for both homogeneous and HD traffic streams. 

Chapter 3 addresses the first methodological objective (M1) by developing an MVA-

based discrete-continuous choice modelling framework to model the longitudinal movement 

behaviour of car drivers in HD traffic conditions. Specifically, car drivers’ longitudinal 

movement behaviour is analysed by considering influences (or stimuli) from multiple lead 

vehicles (MVA effect) and infrastructure elements around the drivers’ vehicles. To do so, this 

chapter introduces the concept of an influence zone, defined as a hypothetical zone within 

which the surrounding traffic environment, including vehicles, road boundaries, stationary 
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traffic control devices, etc., influences driver’s behaviour. Further, this is perhaps the first time 

that drivers’ discrete and continuous decisions are considered separately but modelled 

simultaneously while also incorporating the influence of multiple surrounding vehicles when 

modelling driver behaviour in HD traffic streams. The proposed model, when applied to vehicle 

trajectory data from a traffic stream in Chennai, India, underscores the importance of 

considering MVA to describe driving behaviour in HD traffic conditions. 

Furthermore, the empirical analysis suggests that the cognitive efforts required to 

decide whether to accelerate, decelerate, or maintain a constant speed (the discrete decision) 

may be different from the cognitive efforts needed to determine how much to accelerate or 

decelerate (extent of the decision). Also, the factors influencing the decision on whether to 

accelerate or decelerate might be different (or have a different influence on) than the factors 

influencing the extent of acceleration or deceleration. Thus, the first and second substantive 

objectives (S1 and S2) of this dissertation are addressed in this chapter. 

Chapter 4 contributes to the second methodological objective (M2) by enhancing the 

discrete-continuous choice modelling framework developed in Chapter 3 to incorporate subject 

vehicle- and driver-specific unobserved factors that influence driver behaviour and then use 

this enhanced modelling framework to compare and contrast car driver behaviour between HD 

and homogeneous traffic conditions. The empirical analysis demonstrates the value of 

incorporating MVA in two different empirical settings – one in the context of HD traffic using 

a vehicle trajectory dataset from Chennai, India and the other in homogeneous traffic context 

using trajectory data from California, USA. The empirical results reveal both similarities and 

differences in car driver behaviour between homogeneous traffic and HD traffic conditions 

trajectory datasets. Specifically, in both traffic conditions’ trajectory data, in addition to 

vehicles ahead of the subject vehicle in its lane, vehicles ahead in the adjacent lanes influence 

its driver behaviour. However, side vehicles influence drivers’ decision-making only in HD 

traffic conditions. Also, after an extensive empirical investigation, this chapter recommends 

the appropriate sizes of influence zones for modelling driver behaviours in HD and 

homogeneous traffic streams. Thus, this chapter also addresses the first substantive objective 

(S1) of this dissertation. 

 Chapter 5 contributes to the third methodological objective (M3) by enhancing the 

MVA-based driver behaviour model by developing a methodology to incorporate drivers’ 

perception errors in variables describing the traffic environment. In this chapter, an 



 

 

11 

 

econometric analysis is undertaken to evaluate two different ways of specifying errors in traffic 

environment variables – (a) the additive specification and (b) the multiplicative specification – 

in discrete choice models of driver behaviour. It is shown that models with an additive error 

specification are not econometrically identified to be able to incorporate perception errors in 

several traffic environment variables, while those with multiplicative error specification are 

not saddled with theoretical identification problems. The effectiveness of the proposed 

framework is demonstrated through simulation experiments as well as an empirical application 

for analysing driver behaviour while considering driver errors in perceiving traffic environment 

variables. This newly proposed modelling framework also provides insights into the role of 

perception errors in driver behaviour. For example, first, the empirical application 

demonstrates that allowing for stochasticity due to perception errors in traffic environment 

variables is more important than allowing unobserved heterogeneity in drivers’ response to 

those variables. Second, greater variation is found in drivers’ perceptions of the traffic 

environment variables with respect to vehicles that are not directly ahead of their vehicles (than 

those that are directly ahead). This may be because drivers pay greater attention to vehicles 

directly ahead of their vehicle than those that are not ahead (an indication of how they allocate 

cognitive efforts). Third, stochasticity due to perception errors for relative longitudinal speeds 

is found to be greater than that for longitudinal space gaps; perhaps because drivers perceive 

relative speeds less precisely than space gaps. Fourth, drivers’ perception of lateral gaps 

between two moving vehicles ahead is associated with greater uncertainty than that associated 

with longitudinal space gaps with respect to any of those vehicles. The work in this chapter is 

geared towards addressing the third substantive objective (S3) of this dissertation. 

Chapter 6 contributes to the fourth methodological objective (M4) by formulating a 

latent class-based driving behaviour framework that considers drivers’ intents for modelling 

vehicles’ 2D movements while considering the MVA effect on these movements in HD traffic 

situations. Specifically, five extensions are proposed to a typical stimulus-response based 

driving behaviour framework. First, the subject vehicle’s 2D movements are represented as a 

combination of the angular direction of movement with respect to the longitudinal axis and the 

magnitude of acceleration or deceleration along the angle. Second, a latent class framework is 

used to recognize drivers’ strategic intents (latent to the analyst) in two dimensions: (a) the 

intent to accelerate, decelerate, or maintain a constant speed, and (b) the intent to steer to the 

left of, right of, or straight along the longitudinal axis. It is hypothesized that these higher-level, 

strategic intents precede lower-level, tactical decisions such as exactly how much to accelerate 
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or decelerate and which specific angular direction to move along. Third, the MVA effect is 

accommodated to recognize that drivers consider stimuli from multiple vehicles in their 

vicinity. Fourth, a multi-stimuli model of acceleration is formulated based on the assumption 

that drivers choose an angle of movement that allows them to move with the highest (lowest) 

possible longitudinal acceleration (deceleration) if they intend to accelerate (decelerate). Fifth, 

drivers’ execution errors are recognized as the difference between their intended acceleration 

and executed acceleration. An empirical application of the proposed framework is presented 

for analysing driver behaviour of motorised two-wheelers using an HD traffic conditions 

trajectory dataset from Chennai, India.  

The empirical results highlight the importance of incorporating MVA and considering 

driver’s intents while modelling 2D movements of motorised two-wheelers in HD traffic 

conditions. Further, the microscopic traffic environment variables are found to have a stronger 

influence on drivers’ higher-level, strategic intents than on their lower-level, tactical decisions. 

This may be because drivers invest greater cognitive resources in making their higher-level, 

decisions (which may be latent to the analyst from typical trajectory datasets) than what they 

invest in making the lower-level, tactical decisions, such as exactly how much to accelerate or 

decelerate and which specific angular direction to move along. Thus, the fourth substantive 

objective (S4) of this dissertation is addressed in this chapter. 

Chapter 7 contributes to the fifth substantive objective (S5) by developing a traffic 

microsimulation platform for applying the above-developed driver behaviour models of cars 

and motorised two-wheelers to simulate HD traffic streams. Subsequently, this HD traffic 

simulator is used to evaluate if the developed driver behaviour models reflect typically 

observed macroscopic properties of traffic flow. 

Chapter 8 concludes the dissertation by recapitulating the findings from and 

contributions of this research and identifying directions for future research. 

1.5 LIMITATIONS IN THE SCOPE OF THE DISSERTATION 

This dissertation only models the microscopic movement patterns of cars and motorised two-

wheelers in HD traffic streams. Other vehicle types such as auto-rickshaws, buses, and trucks 

are not in the scope of this dissertation. Typically, in the existing literature, longitudinal driving 

behaviour is modelled for cars and 2D driving behaviour is modelled for motorised two-

wheelers. The same is pursued in this dissertation. Further, the microscopic traffic simulation 

platform built in this dissertation simulates one-directional HD traffic on a mid-block road 
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section consisting of cars and motorised two-wheelers, which is sufficient to test the proposed 

driver behaviour modelling framework in this dissertation.  

The empirical applications of developed driver behaviour models are used to make 

informed speculations on how drivers might allocate their cognitive resources for making 

complex driving decisions. Note that this dissertation does not measure drivers’ cognitive 

efforts directly but compares the strength of influence of traffic environment variables on their 

driving behaviours to arrive at plausible conclusions on the extent of cognitive efforts invested 

by drivers in making different manoeuvring decisions.  

This dissertation focuses on only two human factors – MVA and drivers’ perception 

errors – while modelling driver behaviour. Other human factors, such as aggressiveness and 

carefulness in driving, driving behaviours based on anticipating future actions of other vehicles, 

etc. are not addressed in this dissertation. As importantly, this dissertation reduces driving 

behaviour to the decisions drivers make in the next time step based on the current traffic 

environment. By doing so, the time dynamics of driving over several time steps, such as the 

influence of one’s anticipated future actions on current actions, are not considered. Finally, this 

dissertation does not explicitly consider the interactions of different drivers in a traffic stream 

sharing and competing for the same space. All these are important limitations in the scope of 

this dissertation, addressing each of which is an important avenue for future research. 
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CHAPTER 2 MULTI-VEHICLE ANTICIPATION BASED DRIVER BEHAVIOUR 

MODELS: A SYNTHESIS OF EXISTING RESEARCH 

Abstract 

Multi-vehicle anticipation (MVA) refers to drivers’ ability to consider stimuli from several 

vehicles ahead in their manoeuvring decisions such as longitudinal, lateral, and a combination 

of longitudinal and lateral movements. Studies on MVA identify various advantages of 

incorporating MVA in driver behaviour models, such as improved behavioural realism, 

superior numerical soundness, and plausible model outputs. While there are some excellent 

reviews of single leader driver behaviour models available in the literature, none of them 

explicitly focuses on models incorporating MVA behaviour despite it being an integral aspect 

of drivers’ manoeuvring decisions. This chapter provides a comprehensive review of MVA 

based driver behaviour models developed for both homogeneous and heterogeneous, 

disorderly (HD) traffic streams. Among others, our findings indicate that MVA based driver 

behaviour models follow a similar pattern of extending the established single-leader car-

following models, considering vehicles that are directly ahead (in the same lane), and focussing 

on a fixed number of vehicles ahead.  

 

Note: The material in this chapter is drawn from the following paper: 

Nirmale, S. K., Sharma, A., and Pinjari, A. R. (2022). Multi-vehicle anticipation based driver 

behaviour models: A synthesis of existing research and future research directions. (In review 

with Transportation Letters).  
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2.1 INTRODUCTION 

Driver behaviour models are used to describe driver behaviours of different types of vehicles 

and serve as building blocks to describe various traffic scenarios ranging from free flow to 

congested traffic and city traffic to highway traffic. A few examples of well-known driver 

behaviour models are Newell’s model (Gordon Frank Newell, 1961), Gipps’ model (Gipps, 

1981), Optimal velocity model (Bando et al., 1995), and  Intelligent driver model (Treiber et 

al., 2000). At large, these models are founded on the stimulus-response framework that was 

first introduced in the 1950s at the General Motors research laboratories (Chandler et al., 1958; 

Gazis et al., 1961). According to this framework, a driver’s response is proportional to the 

stimulus from a vehicle ahead. In general, an event or a quantity that evokes a specific response 

from the driver is called a stimulus. Researchers have considered various stimuli such as speed 

difference between the subject vehicle and the immediate leader, spacing between the subject 

vehicle and the immediate leader, and other sources such as gradient, traffic signals, lane 

closures, lane markings, etc. A majority of available driver behaviour models assume that 

drivers respond to the stimuli from the immediate lead vehicle only (Brackstone and 

McDonald, 1999; Saifuzzaman and Zheng, 2014). However, it has been demonstrated 

theoretically and empirically that drivers anticipate downstream traffic conditions, consider 

stimuli from multiple vehicles ahead and respond accordingly (Hoogendoorn and Ossen, 2006; 

Hoogendoorn et al., 2006). Therefore, models that consider stimuli from more than one vehicle 

to describe driver behaviour offer a higher degree of realism than those that consider stimuli 

from a single vehicle ahead of the subject vehicle. These driver behaviour models are the focus 

of this review. 

Before moving further, we define some terminologies related to the anticipation by 

drivers that are commonly and interchangeably used in the literature. Existing literature refers 

to the following terms in the context of anticipation: multi-anticipative, multi-vehicle 

anticipation, spatial anticipation, temporal anticipation, and multiple sources of stimuli (or 

information). The terms ‘multi-anticipative’, ‘multi-vehicle anticipation’, and ‘spatial 

anticipation’ refer to drivers’ ability to consider stimuli from several vehicles ahead in their 

manoeuvring decisions. The term ‘temporal anticipation’ refers to drivers’ ability to anticipate 

the traffic situation for the next few seconds and react accordingly. Whereas the term ‘multiple 

sources of stimuli’ indicates drivers’ ability to consider stimuli from lead vehicles as well as 

from other sources (mentioned above) in their manoeuvering decisions. This review focuses 

on models incorporating the multi-vehicle anticipation (MVA) behaviour of drivers.  



 

 

16 

 

The first question that arises is why do drivers consider stimuli from several vehicles 

or anticipate their behaviour? Drivers anticipate the surrounding vehicles’ behaviour to adjust 

their manoeuvring decisions and perform them safely. In homogeneous traffic streams, while 

moving in the longitudinal direction, drivers adjust their acceleration/deceleration and its extent 

by observing the dynamics of vehicles directly ahead. For instance, by noticing the slowing 

down of vehicles ahead (second leader or third leader), drivers proactively regulate their 

acceleration to avoid sudden jerks. When it comes to lane-changing, consideration of stimuli 

from multiple surrounding vehicles becomes more important because a lane change is a 

complex and riskier manoeuvre and involves interactions with a greater number of vehicles 

than car-following. Further, it is well-known that the characteristics of heterogeneous, 

disorderly (HD) traffic streams are substantially different than homogeneous traffic streams in 

terms of traffic composition, lane discipline, and overall driver behaviour (more on this in 

Section 2.3). One can witness longitudinal, lateral, and a combination of longitudinal and 

lateral (also known as two-dimensional) movements in HD traffic streams. For a two-

dimensional movement to be safe, drivers must consider the dynamics of vehicles that are not 

only directly ahead but also laterally placed. The anticipation of movements of multiple 

vehicular becomes more important in HD traffic streams (than in homogeneous traffic streams) 

because other vehicles can cut-in at any time and may cause a safety-critical situation. Hence, 

it is no exaggeration to say that multi-vehicle anticipation is an integral aspect of drivers’ 

manoeuvring decisions. It makes drivers proactive and thereby better and safe decision-makers 

(Sharma et al., 2017a).          

Studies on MVA enumerate various advantages of incorporating MVA in driver 

behaviour models such as improved behavioural realism, superior numerical soundness, and 

plausible parameter estimates and model outputs (Bexelius, 1968; Lenz et al., 1999; 

Hoogendoorn and Ossen, 2006; Treiber et al., 2006). Despite the importance of considering 

MVA, models that incorporate MVA are underexplored. Although there are some excellent 

review studies on driver behaviour models (Brackstone and McDonald, 1999; Toledo, 2007; 

Moridpour et al., 2010; Saifuzzaman and Zheng, 2014; Asaithambi et al., 2016; Munigety and 

Mathew, 2016; Das and Maurya, 2018b; Mahapatra et al., 2018; Chakroborty et al., 2019; 

Azam et al., 2020), none of them comprehensively reviews MVA based driver behaviour 

models. An in-depth exploration of MVA based models will reveal prevalent theories behind 

such models, approaches to incorporate MVA behaviour, shortcomings of the available 

approaches, and a way forward to better mimic the MVA behaviour of drivers.  
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This chapter, hence, attempts to fill this gap by providing a critical review of MVA 

based driver behaviour models developed for both homogeneous and HD traffic streams. The 

remainder of this chapter is organised as follows. Sections 2.2 and 2.3 review models that 

incorporate MVA by a driver in homogeneous traffic conditions and HD traffic conditions, 

respectively. Section 2.4 provides literature review on driver behaviour models with perception 

errors. Section 2.5 discusses the main findings from the review of existing literature. Section 

2.6 synthesises the relevant research gaps in the current literature to incorporate MVA 

behaviour. Finally, Section 2.7 concludes this chapter.  

2.2 MODELS THAT INCORPORATE MULTI-VEHICLE ANTICIPATION BY 

DRIVERS IN HOMOGENEOUS TRAFFIC STREAMS 

We observe that the majority of MVA based models are extensions of well-known single-leader 

driver behaviour models such as the Gazis-Herman-Rothery (GHR) car-following model, 

optimal velocity model (OVM), full velocity difference (FVD) model, and intelligent driver 

model (IDM). Hence, we review the MVA based driver behaviour models under the 

classifications of extensions of these well-known single-leader models. The functional forms 

of these single-leader driver behaviour models are provided in Table 2.1.  

2.2.1 Extensions of GHR Car-Following Model  

Bexelius (1968) and Gazis et al. (1959) were probably the first to extend the well-known GHR 

car-following model to consider stimuli from multiple leaders. Eq. (2.1) provides the model 

formulation:  

 
( )

1

( ) ( )
N

j

i i j i

j

a t T V t
=

+ =   (2.1) 

where, ( )i ia t T+  is the acceleration of the subject vehicle i  at time it T+ ; iT   represents 

reaction time; N  is the number of lead vehicles considered; 
( ) ( )j

iV t  represents the speed 

difference between the speed of the 
thj  lead vehicle ( )( )jV t  and speed of the subject vehicle 

( )( )iV t , and j  is sensitivity coefficient (or weight) to 
( ) ( )j

iV t . As can be observed from Eq. 

(2.1), the MVA is incorporated by considering cumulative weighted stimuli from N  vehicles 

ahead. Setting 1N =  gives the original GHR car-following model with a single lead vehicle. 

An advantage of this model is its simplicity. However, the model presented in Eq. (2.1) suffers 

from the same limitations as the original GHR model. These are: (i) inter-driver heterogeneity 
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is not captured since the model assumes the identical reaction time values for all drivers; and 

(ii) it assumes that the drivers’ manoeuvring actions are only dependent on relative speed. 

Further, the earlier studies that used this model did not provide empirical evidence for the 

presence of MVA behaviour (Saifuzzaman and Zheng, 2014).  

Table 2.1 Single leader driver behaviour models 

Model Formulation 

GHR linear car-following 

model 

(1)( ) ( )i i j ia t T V t+ =   

GHR non-linear car-following 

model 
( )

( )

(1)

(1)

( )
( ) ( )

( )

i
i i i i

i

V t
a t T V t T

X t







+ = +


 

Helly’s model ( )(1) (1) ( )

1 2( ) ( ) ( ) ( )des

i i i i i ia t T V t X t X t T + =  +  − + , 

where, 

( )

0 1 2( ) ( ) ( )des

i i i iX t T V t a t   + = + +  

Optimal velocity model (OVM) ( )(1)( ) ( ) ( )i j OV i ia t V X t V t  =  −
 

, 

where, 

( ) ( ) ( )(1) (1)( ) tanh ( ) 2 tanh 2OV i iV X t X t =  − −  

Full velocity difference (FVD) 

model 

. ( ) ( )(1) (1)

0 1( ) ( ) ( ) ( )i OV i i ia t a V X t V t V t =  − + 
 

. 

where, 

( ) ( )( )(1) (1)

1 2 1 2( ) tanh ( )OV i i iV X t V V C X t L C = +  − −  

Intelligent Driver Model (IDM) 2
(1,des)

max

( ) (1)

( ) ( )
( ) 1

( ) ( )

i i
i i des

i i

V t X t
a t a

V t X t

    
 = − −   

     

, 

where, 

(1)
(1,des) ( )

0 1 ( ) max

( ) ( ) ( )
( ) ( )

( ) 2

desi i i
i i ides conf

i i i

V t V t V t
X t C C V t T

V t a b


 = + + −  

Note: Refer to the list of abbreviations and notations provided on Page xxi for details of the 

terms used in the above table.  
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To empirically investigate MVA based models, Hoogendoorn and Ossen (2006), 

Hoogendoorn et al. (2006) and Zhang (2014) analysed vehicle trajectory data using regression 

analysis. Hoogendoorn and Ossen (2006) utilised the multivariate linear regression analysis to 

estimate parameters of Bexelius’s multi-anticipatory car-following model (Eq. (2.1)). They 

empirically demonstrated that drivers not only consider the vehicle directly ahead but also the 

second leader. Furthermore, they concluded that the degree of driver’s reaction to the second 

leader is dependent on both the types of the following and followed vehicles. Drivers following 

a truck, for example, had a weaker reaction to the second leader on average than those behind 

a car, perhaps because drivers cannot easily sight past a truck. Similarly, truck drivers have a 

significant reaction to the second leader, maybe because truck drivers’ elevated vantage point 

offers a greater sight distance.  

Next, Hoogendoorn et al. (2006) proposed the following two modifications to the 

Bexilus’ MVA model.  

Bexelius Type 2 model: 

  (1) (2) ( )( ) min ( ), ( ),..., ( )N

i i i i ia t T V t V t V t+ =     (2.2) 

Bexelius Type 3 model: 

  (1) (2) ( )

1 2( ) min ( ), ( ),..., ( )N

i i i i N ia t T V t V t V t  + =     (2.3) 

These models assume that the driver may only respond to the first, second, or third leader based 

on the speed difference between their vehicle and the lead vehicles. However, these models do 

not consider relative spacing as a stimulus and ignore behavioural differences between different 

manoeuvring decisions (acceleration or deceleration). To fill these gaps, Hoogendoorn et al. 

(2006) proposed a generalised version of Helly’s (1959) model by including a distance-

dependent factor in it as provided below:  

 ( )
1 2

( ) ( ) ( )

1 1

( ) ( ) ( ) ( )
N N

j j des

i i j i j i i i

j j

a t T V t X t X t T 
= =

+ =  +  − +   (2.4) 

where, 
( ) ( )j

iX t  represents the distance between the lead vehicle j  and subject vehicle i  at 

time t ; 
( ) ( )des

i iX t T +  is desired distance between the subject vehicle i  and its 
thj  leader at 

time ( )it T+ . In Eq. (2.4), the additive expression brings in relative speed and spacing as 

different sources of stimuli. Hoogendoorn et al. (2006) employed the maximum likelihood 
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estimation approach to calibrate the sensitivities (aka, coefficients) of the stimuli from different 

vehicles, and used a likelihood ratio test to evaluate the benefits of accounting for MVA. Their 

empirical results suggested that incorporating the MVA effect improved the extent to which 

the models could explain observed driver behaviour.  

Following Hoogendoorn et al. (2006), Zhang (2014) provided more insights on the 

linear-type MVA driver behaviour model. Specifically, Zhang (2014) proposed a modified 

generalised linear MVA car-following model (Eq. (2.5)) and addressed two issues – 

multicollinearity between explanatory variables and the serial correlation of time series data.  

 ( ) ( )
1 2

( ) ( ) ( )

0

1 1

( ) ( ) ( ) ( )
N N

j j des

i i j i j i i i i it

j j

a t T V t X t X t T V t    
= =

+ = +  +  − + + +   (2.5) 

Where, iV  represents speed of the subject vehicle i . This study empirically demonstrated that 

the traffic congestion level (extremely congested and less congested) affects driver’s reactions 

to different stimuli with respect to different lead vehicles. For example, the study’s estimation 

results depicted that drivers in extremely congested traffic conditions would react to relative 

speeds with respect to the first, second, and even the third leader.  

2.2.2 Extensions of Models Based on Optimal Velocity Model (OVM) 

2.2.2.1 Extensions of OVM  

The OVM was also widely utilised to mimic the MVA behaviour of drivers. For example, Lenz 

et al. (1999) extended the OVM to include multiple vehicle responses. Following Bexelius 

(1968), Lenz et al. (1999) assumed that drivers react to the dynamics of their leading vehicle 

and an arbitrary number of vehicles ahead with a sensitivity j . The mathematical formulation 

is provided below:  

 

( )

1

( )
( ) ( )

jN
i

i j OV i

j

X t
a t V V t

j


=

  
= −  

  
   (2.6) 

Here,  1N =  leads to the original optimal velocity model.  They borrowed the following 

functional form from Bando et al. (1998)1 for (.)OVV .  

 
1 Different studies use different functional forms for the optimal velocity function. To avoid confusion and 

notation burden, we use a generic symbol (.)OVV  for the optimal velocity function throughout the chapter. 
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 ( ) ( ) ( )(1) (1)( ) tanh ( ) tanhOV i iV X t X t C C =  − −  where C is a constant (2.7) 

The study demonstrated increased stability with the MVA based model. Same as in the case of 

the GHR model, the MVA is incorporated by summing up the weighted stimuli from vehicles 

ahead. However, a functional form is assumed to compute the sensitivity coefficient j . 

Notably, a few studies have extended Lenz's model by considering reaction time and 

desired distance (Hoogendoorn et al., 2006; Hu et al., 2014; Chen  et al., 2016). For instance, 

Hoogendoorn et al. (2006) integrated the reaction time ( )iT  as per Eq. (2.8) .  

 

( )

1

( )
( ) ( )

jN
i

i i j OV i

j

X t
a t T V V t

j


=

  
+ = −  

  
  (2.8) 

Later, Ge et al. (2004) proposed an extended car-following model by incorporating headways 

of arbitrary numbers of lead vehicles in optimal velocity function itself. The functional form 

of the model is given below: 

 ( )

1

( ) ( )
N

j

i OV j i

j

a t V X t
=

 
=  

 
  (2.9) 

where, j  is a weighted function of 
( ) ( )j

iX t  with the following properties: 

1. j  decreases monotonically as j  increases, i.e.,  1 2   indicating that the influence 

of the vehicle ahead of the subject vehicle reduces gradually as the distance between 

the subject vehicle and lead vehicle increases.  

2. j  takes the following functional form  

 1

1

1

6
 for 

7
1, 1 1,

1
 for .

7

N j

j j

j

j

j N

j

j N

  
=

−




= =  = = 
 =


  (2.10) 

The authors performed a simulation-assisted stability analysis and found that MVA 

further stabilises the traffic flow compared to the single leader model. Additionally, the 

simulation results from the study confirmed that only the information of three cars ahead of the 

subject vehicle is enough for cooperative driving. However, empirical evidence is missing from 

this study. 
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Wilson et al. (2004) proposed multiple look-ahead models that consider information 

from multiple leaders as provided below. 

Model A: 

 ( )( )

0

1

( ) ( ) ( )
N

j

i j OV i i

j

a t V X t V t 
=

 
=  − 

 
   (2.11) 

Model B: 
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i j OV i
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a t V V t

j
 

=

   
= −  
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In Model A, 0j   and 
1

1
N

j

j


=

=  so that uniform flow solutions are the same as in the standard 

OVM, thus, if the space gap between the subject vehicle i  and the lead vehicle j  is small, the 

subject vehicle i  will have a lower optimal velocity than the standard OVM. Hence, the subject 

vehicle i  will tend to brake earlier when approaching congested traffic. Model B is taken from 

Lenz et al. (1999) where the optimal velocity of the subject driver i  is given by a weighted 

sum of the original optimal velocity function, evaluated at a distance to each lead vehicle ahead. 

The study exhibited that the proposed model did not predict unrealistic values of acceleration. 

Note that we observe two types of representations when MVA behaviour is considered in the 

OVM. In Equations (2.11) and  (2.12), the sensitivity coefficient is directly multiplied to the 

optimal velocity function, whereas in Equations (2.6) and (2.8), the sensitivity coefficient is 

multiplied by the difference between optimal velocity function and velocity of the subject 

vehicle. Note that formal analysis is missing in the existing literature regarding which 

formulation is better. We believe that the latter is more behaviourally sound since it considers 

driver’s sensitivity to the stimuli, i.e., the difference between the optimal velocity and the 

velocity of the subject vehicle rather than the optimal velocity only.  

Furthermore, Chen et al. (2012) incorporated driver’s reaction time in Wilson et al. 

(2004)’s model and proposed a multiple look-ahead model with driver reaction delay as below:  

 ( )

0

1

( ) ( ( )) ( )
N

j

i i j OV i i

j

a t T V X t V t 
=

 
+ =  − 

 
  (2.13) 
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Following Ge et al.  (2004), the following functional form was employed by Chen et al. (2012)  

for j .  

 
1

1

1
 for 

1,
1

 for .

N j

j j

j

j

N
j N

N

j N
N

 
=

−

−


= = 
 =


  (2.14) 

The study utilised the following optimal velocity function from the Bando et al. (1995) study. 

 ( ) ( ) ( )( ) ( )

max( ) 0.5 tanh ( ) tanhJ j

OV i i c cV X t V X t X X  =  − + 
 

 (2.15) 

where, maxV  is the maximum velocity and cX  is the safety distance.  

Hasebe et al. (2003) also extended the OVM to incorporate MVA behaviour and called 

this model a forward-looking optimal velocity model (FLOVM). Their formulation is given 

below: 

 ( )(1) (2) ( )

0( ) ( ), ( ( ),..., ( ( ) ( )J

i OV i i i ia t V X t V X t V X t V t  =    −
 

 (2.16) 

The authors employed the optimal velocity function of Bando et al. (1995) and demonstrated 

that the FLOVM provides greater stability than the original OVM. 

2.2.2.2 Extensions of full velocity difference (FVD) model  

The FVD model (which is also based on the OVM) was extended by Wang et al. (2006) using 

the velocity differences of multiple vehicles as provided in Eq. (2.17) and called it a multiple 

velocity difference (MVD) model.  

 ( )( ) ( ) ( )

0

1

( ) ( ( )) ( ) ( )
m

des j j

i i i i j i

j

a t a V X t V t V t
=

 =  − +     (2.17) 

The MVD model offered more stability and a better suppression of traffic jams than the FVD 

model. The same strategy of cumulative weighted stimuli is adopted in FVD based extensions 

too.  

Next, by introducing the relative speed of multiple lead vehicles ahead of the subject 

vehicle in the FVD Model, Li and Liu (2006) proposed a forward-looking relative velocity 

(FLRV) model as given below:  
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(1) ( )

1

1
( ) ( ), ( ) ,

5

jN
j

i i OV i j i j

j

a t T V X t V t where 
=

   
+ =   =   

  
  (2.18) 

The modified optimal velocity function is given below:  

 ( ) ( )(1) ( ) (1) ( )

1 1

( ), ( ) tanh ( ) 4 tanh 4 ( )
N N

j j

OV i j i i j i

j j

V X t V t X t V t  
= =

   
  =  − − +    
   

   (2.19) 

where,  is a constant that is independent of time, velocity, and position. In addition, this study 

confirmed that incorporating the relative speed as a stimulus can stabilise the traffic flow, just 

as in the FLOVM.  

Later, Yu et al. (2008) proposed an extended model (Eq. (2.20)) that includes a special 

case of the original OVM and FVD model.  

 ( )( ) ( 1) ( 1) (1)

0 1( ) ( ), ( ),..., ( ) ( ) ( )j j j m

i OV i i i i ia t V X t X t X t V t V t + + −   =    − +   
 (2.20) 

The authors employed the following optimal velocity function: 

( ) ( )( ) ( 1) ( 1) ( )

max

1

( ), ( ),..., ( ) 0.5 tanh ( ) tanh
m

j j j m j

OV i i i j i c c

j

V X t X t X t V X t X X+ + −

=

  
   =  − +   

   


 (2.21) 

where, cX  is the constant safe distance. This study demonstrated that traffic jams are 

suppressed more efficiently by considering the headway of more lead vehicles ahead of the 

subject vehicle and relative speed with respect to the first lead vehicle.  

Similarly, Peng and Sun (2010) also modified the FVD model to propose the following MVA 

model.  

 
( )

( ) ( 1) ( 1)

0

( ) ( 1) ( 1)

0

( ) ( ( ), ( ),..., ( )) ( )

( ), ( ),..., ( )

j j j N

i OV i i i i

j j j N

i i i

a t V X t X t X t V t

G V t V t V t





+ + −

+ + −

 =    − 

+   
 (2.22) 

where, (.)OVV  is the optimal velocity function and (.)G  is assumed as a monotonically 

increasing function and their formulations are given below:  
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( ) ( ) ( )

( ) ( ) ( )

( ) ( 1) ( 1) * ( ) * ( 1) * ( 1)

1 2

* ( ) ( )

max

( ( ), ( ),..., ( )) ( ) ( ) ... ( )

, ( ) 0.5 tanh ( ) tanh

j j j N j j j N

OV i i i i i N i

j j

i i c c

V X t X t X t V X t V X t V X t

where V X t V X t X X

  + + − + + −   =  +  + + 

  =  − + 
 

 (2.23) 

( )( ) ( 1) ( 1) ( ) ( 1) ( 1)

1 2( ), ( ),..., ( ) ( ) ( ) ... ( )j j j N j j j N

i i i i i N iG V t V t V t V t V t V t  + + − + + −   =  +  + +   (2.24) 

To reflect that the influence of a lead vehicle on the subject vehicle reduces with its distance 

from the subject vehicle, the authors proposed the following functional form for j  and j  
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= = =
 =


  (2.25) 

where, j  and j  are the weighting values representing intensity that driver reacts to its 
thj  

lead vehicle. Note that Ge et al.  (2004) and Chen et al. (2012) implemented a similar functional 

form for j  in their study. Numerical simulation results by Peng and Sun (2010) showed that 

traffic jams are reduced effectively when more lead vehicles are considered.  

Further, Jin et al. (2011) proposed an extended car-following model that is based on 

original OVM and FVD models by adopting multiple velocity differences, as below: 

 ( )( )(1) (2) (1) (2)

0 1 2( ) ( ), ( ) ( ) ( ) ( )i OV i i i i ia t V X t X t V t V t V t  =   − +  +   (2.26) 

The authors used the following generalised optimal velocity function.  

 ( ) ( )(1) (2) (1) (2) 1
( ), ( ) 1 ( ) ( ),  where, 0

2
OV i i i iV X t X t p X t p X t p  = −  +     (2.27) 

Note that 
(1) ( )iX t  is weighted more as compared to 

(2) ( )iX t  to reflect that the first leader’s 

influence is greater than the second leader’s influence. Further, the study demonstrated that 

considering the generalised optimal velocity function and velocity differences with respect to 

multiple vehicles stabilises traffic flow and suppresses traffic jams.  

Previously discussed studies use only the space headways and relative velocities with 

respect to multiple lead vehicles to analyse driver behaviour. However, Li et al. (2011) argued 

that in addition to space headways and velocity differences, acceleration differences could also 

influence driver behaviour. Therefore, they proposed the multiple headway, velocity, and 
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acceleration difference model that considered all three types of stimuli. The functional 

formulation is given below.  

( ) ( )( ) ( ) ( )

0 1 2

1 1 1

( ) ( ) ( ) ( ) ( )
N N N

j j j

i OV j i i j i j i

j j j

a t V X t V t V t a t     
= = =

      
=  − +  +       

       
    (2.28) 

where, 0 0  , and  1 2, 0,1    are different sensitivity coefficients; 
( ) ( )j

ia t  represents 

acceleration difference between the lead vehicle j  and subject vehicle i  at the time t ; j , j

, and j  are different weighting coefficients. This study used Eq. (2.15) for (.)OVV . Moreover, 

they assumed j  as a decreasing function with j , i.e., 1j j  +  and 
1

1
N

jj


=
= . The 

functional form for j  is the same as that from Peng and Sun (2010). Moreover, Li et al. (2011) 

illustrated that their model had a greater stable region than that of the FVD model.   

2.2.3 Extensions of Intelligent Driver Model (IDM) 

To incorporate MVA, Treiber et al. (2006) considered cumulative stimuli between the subject 

vehicle i  and lead vehicle j  for N  lead vehicles as given below:  
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=

=

 
    
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 
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 (2.29) 

where, 
( )

1

( )
N

j

i

j

X t
=

  represents net gaps between the subject vehicle i  and lead vehicles j  and 

( ,des) ( )j

iX t  is represented below:  

 

( )
( ,des) ( )

0 1 ( ) max

( ) ( ) ( )
( ) ( )

( ) 2

j
j desi i i

i i ides conf
i i i

V t V t V t
X t C C V t T

V t a b


 = + + −  (2.30) 

Chen et al. (2010) showed that this formulation leads to an issue at equilibrium flow; i.e., the 

space gap at equilibrium flow is dependent on the number of lead vehicles leading to different 

desired headways at the same uniform space gap at equilibrium. To overcome this drawback, 

Chen et al. (2010) proposed the following IDM-based model:   
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i i i i
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  (2.31) 

where, j  represents weight coefficients which decrease monotonically as j  increases to 

reflect that the influence of lead vehicles decrease with an increase in the space gaps. They also 

concluded that the stable region increases after incorporating MVA.  

2.2.4 Extension of Collision-Avoidance Models  

Eissfeldt & Wagner (2003) extended a collision-avoidance based car-following model based 

on Gipps (1981), Krauss et al.  (1996) and Krauss (1998) and aimed at clarifying the role of 

anticipation in the microscopic traffic model through simulation and analytical calculations. 

The authors assumed that a driver predicts the worst-case strategy (represented as predV ) that 

the immediate leader will choose in the next time step. predV  was a function of the leader’s 

desired speed which in turn was a function of the speed of and spacing with respect to the 

second lead vehicle. Considering that there is a second lead vehicle in front of the first lead 

vehicle within a distance 
(2)

1X  driving with speed 2V , then  

  max ,0pred desV V a= −  (2.32) 

 ( ) (2*)

1 2, 2 maxmin , , ,des safe iV V a V V X V= +   (2.33) 

 ( )(2*) 2 2 2 (2*)

2 2, 2safe i i i iV V X bT b T V b X = − + + +   (2.34) 

Then, predV  is used to calculate the safe speed for the subject vehicle i  as below: 

  ( )2 2 2 (1)

, constant2 min ,i safe i i pre i pred i pred iV bT b T V b X V T V T X= − + + +  + −   (2.35) 

where, a  and b  represent acceleration and deceleration, respectively. The speed of the first 

and second lead vehicles are represented as 1V  and 2V , respectively. 
(1)

iX  is the space gap 

between the first lead vehicle and subject vehicle i  whereas 
(2*)

iX  is the space gap between 

the second lead vehicle and the first lead vehicle. The parameter   represents fluctuations in 

units of acceleration ( a ). 
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2.2.5 Extensions of Piece-Wise Linear Car-Following Model 

A piece-wise linear car-following model was extended to incorporate MVA in driver behaviour 

(Farhi et al., 2012). It was a first-order discrete-time model, where speeds were modelled as a 

function of spacings. In this study, the minimum form was used rather than an additive form, 

which is commonly incorporated in the context of MVA based driver behaviour models. 

Moreover, the spacing to the 
thj  lead vehicle was divided by j   to make sensitivities uniform 

across different lead vehicles. The mathematical formulation is presented below:  

 

( )
1

1

( )
( 1) ( ) min(1 ) min min

j
j i

i i uw
W

uw
j N U wu

X t
X t X t

j
  

 

−



   
+ = + + +  

   
 (2.36)  

Here, 1t +  represents the next discrete time step, uw and  uw , for ( , )u w U W   are 

parameters to be estimated, and U  and W  are two finite sets of indices. With this formulation, 

this study concluded that the minimum form used for considering more than one lead vehicle 

and with a discounting factor ( )  used to favour the closest leader over distant ones. The 

proposed model was tested only for single driver trajectory data. The authors reported 

parameter identification issues when a large number of vehicles (the limit was not reported) 

were considered. Also, their modelling framework did not account for heterogeneity in driving 

behaviour.  

2.2.6 Lane Changing Models 

In lane changing, drivers judge the available gaps in the adjacent lane and opt for the safest 

gap. Routinely, drivers interact with more than one vehicle in the current and adjacent lanes by 

considering dynamics (speed, spacing, etc.) of those vehicles in their decision-making. Models 

describing the lane-changing behaviour by design incorporate multi-vehicle anticipation, and 

hence, justifiably, not much special effort has been devoted in the literature to consider MVA 

in lane changing models as is the case in single leader longitudinal movement models. Since 

some excellent review papers on lane-changing models are already available (Toledo, 2007; 

Moridpour et al., 2010; Zheng, 2014), we briefly review a few classical studies on lane-

changing models instead of a detailed review.  

Lane-changing models can be broadly classified into the following categories a) Gipps-

type models, b) Utility theory-based models, c) Cellular automata-based models, d) Markov 

process-based models, e) Hazard-based models, f) Fuzzy-logic based models, and g) game 
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theory-based models. Gipps (1986) was the first to model a driver’s lane change behaviour. 

His model is based on the notion of collision avoidance, treats lane changing as a deterministic 

process, and ignores inconsistency in driver behaviour over time. Building on Gipp's model’s 

shortcomings, Yang and Koutsopoulos (1996) developed and implemented a probabilistic lane-

changing model similar to Gipps’ model in the microscopic traffic simulator MITSIM. They 

defined lane changes as mandatory or discretionary and modelled the lane changing process as 

four consecutive steps: deciding on a lane change, selecting a target lane, examining an 

acceptable distance, and performing the lane shift. Another weakness of Gipps model (1986) 

is the assumption that lane change occurs only when a large enough gap exists in the target 

lane. However, in heavy or congested traffic, this assumption would be unrealistic. To 

overcome this limitation, Hidas (2002, 2005)  proposed an improved modelling framework to 

capture the vehicular interaction induced by lane change, which was explicitly classified into 

three categories based on observations from video-recording vehicular trajectory: free, 

cooperative, and forced lane changes, to overcome this limitation.      

Next, Ahmed et al. (1996) implemented utility theory to model the decision process of 

lane change. The proposed model structure has four latent levels of decision hierarchy, similar 

to steps given by Yang and Koutsopoulos (1996). Later, Tomer (2003) provided an integrated 

modelling framework where the car-following and lane-changing behaviour models were 

joined together in a single model. The integrated model captured the trade-offs between the 

utility of being in the correct lane and the speed advantage offered by a faster lane. Furthermore, 

Kesting et al. (2007) proposed a novel logic for modelling lane changing decisions based on 

lane change’s anticipated advantages and disadvantages. For example, the driver attempts to 

minimise overall braking induced by lane changes. Recently, game theory has received plenty 

of attention to model lane change behaviour. Talebpour et al. (2015) and Ali et al. (2019) are a 

few notable attempts in this regard.   

2.3 MODELS THAT INCORPORATE MULTI-VEHICLE ANTICIPATION BY 

DRIVERS IN HETEROGENEOUS DISORDERLY TRAFFIC STREAMS 

Most driver behaviour models assume that vehicles follow lane discipline, follow the centre 

line of the lane, and consider stimuli solely from vehicles in front since they are developed for 

homogeneous traffic conditions. However, in many developing countries (such as India, 

Bangladesh, China, etc.), lanes may not be well delineated, or lane discipline may not be 

effectively maintained, allowing vehicles to occupy any lateral position on the road and 



 

 

30 

 

encouraging two-dimensional movement for the vehicles to navigate ahead. In addition, 

vehicles from the side can cut-in to the front of a subject vehicle anytime.  Furthermore, HD 

traffic streams comprise a wide variety of vehicle classes (such as passenger cars, motorbikes, 

buses, trucks, three-wheeled auto-rickshaws, and non-motorised vehicles) with considerably 

different physical and operational characteristics. Most of these classes have substantial 

representation in the traffic streams. In contrast, homogeneous traffic streams are dominated 

mostly by passenger cars having similar physical and operational characteristics. Such 

distinctive characteristics of HD traffic streams cause differences in driver behaviour between 

homogeneous and HD traffic streams. The same can be reflected in MVA behaviour. 

Therefore, in this section, we mainly focus on the studies that have considered the MVA effect 

while modelling driving behaviour in HD traffic streams. Moreover, we divide this section into 

two subsections – 1) studies that model only longitudinal movements, and 2) studies that model 

two-dimensional movements.  

2.3.1 Multi-Vehicle Anticipation-Based Driver Behaviour Model for Describing 

Longitudinal Movements  

2.3.1.1 Extensions of FVD model  

Jin et al. (2010) proposed a non-lane-based FVD model by taking into consideration the effect 

of the lateral gap between the subject vehicle and the lead vehicle. It was hypothesised that a 

driver is affected by the vehicle directly ahead as well as adjacent to it.  

 ( ) ( )(1) (2) (1) (2)( ) ( ), ( ) ( ) ( ), ( )i i i i i ia t U X t X t V t G V t V t    =   − +  
   

 (2.37) 

The following functional forms for ( ).U  and ( ).G  are employed in their study:  

 ( ) ( )( )(1) (2) (1) (2)( ), ( ) 1 ( ) ( )i i OV i i i iU X t X t V p X t p X t  = −  +   (2.38) 

 ( ) ( )(1) (2) (1) (2)( ), ( ) 1 ( ) ( )i i i i i iG V t V t p V t p V t  = −  +   (2.39) 

 

(1)

max

i
i

LS
p

LS
=  (2.40) 

where, (.)OVV  is the optimal velocity function provided in Eq. (2.15); ip  captures the effect of 

lateral separation distance; 
(1)

iLS  is the lateral separation distance between the centre line 

passing through the subject vehicle i  and the centre line passing through the first lead vehicle 
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(i.e., 1j = ). maxLS  is the maximum lateral separation distance beyond which the lead vehicle 

has no influence on the subject vehicle and set to 3.6 m, i.e., typical lane width. Further, when 

0iLS =  (i.e., 0ip = ), the proposed model can be simplified as the FVD model. When 

maxiLS LS=  (i.e., 1ip = ), the first lead vehicle is on another lane, and the subject vehicle 

follows the second lead vehicle. This study demonstrated that incorporating the effect of the 

lateral gap in the car-following model stabilises traffic flow, suppresses traffic jams, and 

increases capacity. 

The above model assumed that only one side of the subject vehicle had a laterally separated 

vehicle. However, the subject vehicle may be influenced by vehicles travelling laterally to 

either side of it. Considering this, Li et al. (2015) developed a two-sided lateral gap FVD  model 

for non-lane discipline traffic as given below:  

 ( ) ( )(1) (2) (3) (1) (2) (3)( ) ( ), ( ), ( ) ( ) ( ), ( ), ( )i i i i i i i ia t U X t X t X t V t G V t V t V t    =    − +   
   

 (2.41) 

It was assumed that the first ( 1)j = , second ( 2)j =  , and third lead ( 3)j =  vehicles are 

travelling on the right front side, left front side, and immediate front of the subject vehicle, 

respectively. Accordingly, stimuli were calculated for each of the lead vehicles. The following 

functional forms for (.)U  and (.)G  were utilised:  

( )
( ) ( )

( ) ( ) ( )

(1) (3) (1)

max(1) (2) (3)

(2) (3) (1)
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2 1 ( ) 2 1 ( ) 0.5 ,

i i i i i

i i i

i i i i i

V p X t p X t LS LS
U X t X t X t

V p X t p X t LS LS LS

  −  +     
   = 

 −  + −     

 (2.42) 
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i i i i i
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i i i i i
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 −  +   
   = 

−  + −   

 (2.43) 

 

1

max

i
i

LS
p

LS
=  (2.44) 

Similar to Jin et al. (2010), this study also employed the optimal velocity function as per Eq. 

(2.15). Stability analysis of the proposed model revealed that the model is more efficient in 

dissipating perturbation than previous FVD based models. 
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2.3.1.2 Utility theory-based models 

In HD traffic streams, the subject vehicle is surrounded by many vehicles, resulting in multiple 

stimuli sources from multiple vehicles. Therefore, drivers might react to stimuli from a 

governing leader.  However, only the driver’s final actions (such as applied acceleration) are 

observed from trajectory data, and the governing leader is latent to the analyst. This prompts 

the need to develop a modelling framework to consider the latent leader while analysing driver 

behaviour. To do so, a latent leader approach was proposed by Choudhury and Islam  (2016) 

to model acceleration decisions. Particularly, a random utility-based modelling framework was 

proposed with two components: latent leader component and acceleration component. The 

former was modelled as a random utility-based discrete choice model, and the probability of 

the front lead vehicle l  (which can be front left, front direct, front right) being a governing 

leader of the subject vehicle i  was expressed as:  

 ( )( )
( )( )
( )( )' '

exp
, ' , ,

exp

j j

i

i j j

i

J

Z t
P l t j j J FL FD FR

Z t




=  =


 (2.45) 

where, ( )j

iZ t represents the explanatory variables associated with the lead vehicle j  and 
j  

is an estimated parameter vector associated with respect to the lead vehicle j . Whereas the 

acceleration component was modelled using the GM model. Strictly speaking, the latent leader 

model is not an MVA-based model, as it assumes that single (unknown) leader.  

2.3.2 Driver Behaviour Model for Describing Two-Dimensional Movements 

Models that can describe simultaneous lateral and longitudinal movements offer more realism 

in describing HD traffic. Yet, such studies are rare (Mahapatra et al. (2018) and Chakroborty 

et al. (2019) provide a review of such efforts). In the ensuing paragraphs, a brief discussion of 

these models is provided, along with some recent studies that were not included in previous 

reviews.  

Chakroborty et al. (2004) developed a comprehensive microscopic model for two-way 

traffic using a potential field approach. The proposed model had two major components, 

namely, (1) Steering Response Model (SRM, for predicting the steering angles adoption with 

time) and (2) Acceleration Response Model (ARM, to predict the rate of acceleration and 

deceleration over time). Later, a Comprehensive Unidirectional Traffic Simulation Model 

(CUTSiM) was proposed by Maurya (2007b) that considered the Indian traffic conditions 
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explicitly. The proposed model included a lateral control model component that describes the 

driver’s decision to choose a suitable steering angle based on the hypothesised best path along 

with its longitudinal control model. However, this model was not extensively calibrated and 

validated. Furthermore, Kanagaraj and Treiber (2018) proposed a two-dimensional time-

continuous model for the mixed traffic flow of motorised and non-motorised vehicles based on 

the force-field model. The trajectory data from Chennai, India, was utilised to calibrate this 

model. Recently, Delpiano et al. (2019) developed a two-dimensional microscopic car-

following model using the social force approach. They argued that the distance maintained by 

the driver to avoid collisions in all directions is a critical factor and thus, proposed the multi-

directional collision avoidance behaviour model where two-dimensional repulsive force 

between vehicles was modelled. Specifically, three forces were considered that act on each 

vehicle: the acceleration force (willingness to accelerate), lane force (tendency to be in the 

centre in a specific lane), and the repulsive force for collision avoidance. Simulation 

experiments were also performed to reproduce two-dimensional collision avoidance behaviour. 

They concluded that the proposed model is a sound starting point for building autonomous 

vehicles traffic flow models and can improve autonomous driving algorithms.  

Next, Mathew et al. (2013) proposed a strip-based approach for the simulation of HD 

traffic conditions. They developed a simulator named Simulation of Mixed Traffic Mobility 

using a traditional lane-based simulator SUMO. In the proposed approach, the road was divided 

into thin strips allowing continuous lateral movement rather than conventional discrete lane 

changing. They observed that the reduction of strip width increases the throughput indicating 

improved utilisation of road space. 

Furthermore, Lee et al. (2009) proposed an agent-based model to simulate motorcycle 

behaviour in HD traffic conditions. They developed three models to mimic motorcycle 

movement patterns, namely, the longitudinal headway model, the oblique and lateral headway 

model, and the path choice model. The longitudinal headway model described the motorcyclist 

driving behaviour that they maintain a shorter headway when aligning to the edge of the lead 

vehicle. The oblique and lateral headway model described the headway distribution of 

motorcycles when they are following the lead vehicles obliquely. The virtual lane-based 

movement of motorcycles was modelled as a multinomial logit. Next, Shiomi et al. (2012) 

proposed a utility theory-based approach to describe the two-dimensional movement of the 

two-wheelers. This approach captured the characteristics of driver perception of the 

surrounding traffic situation albeit, it failed to capture the heterogeneity across the drivers. 
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Following a similar utility theory-based approach, Sarkar et al. (2020) proposed a modelling 

framework that models driver’s two-dimensional movement behaviour. This framework 

proposed two components: area selection and vehicle movement. In the area selection 

component, the possible movements of subject vehicles for next time steps were considered, 

and two-dimensional space ahead of the subject vehicle was divided into the number of realistic 

cones and treated as choice alternatives for the subject vehicle. A multinomial logit model was 

used to model the driver’s discrete decisions. For the vehicle movement component, a modified 

intelligent driver model was proposed, which simulates the subject vehicle's next position in 

the selected direction. Both components of the proposed framework were calibrated separately 

using real trajectory data set collected in Chennai, India.  

2.4 DRIVER BEHAVIOUR MODELS WITH PERCEPTION ERRORS 

For several decades, the typical car-following framework has been used to model driver 

behaviour, where the driver’s acceleration/deceleration actions are modelled as a response to 

stimulus from a lead vehicle ahead of the driver’s vehicle. In addition to the vehicle kinematics 

and traffic environment variables considered in typical car-following models, the literature 

abounds with studies that highlight the importance of accommodating human factors in these 

models. The human factors include, for example, drivers’ socio-demographic characteristics, 

physiological factors, personality traits, imperfect driving, driving skills, and driving desires 

(Hamdar, 2012; Treiber and Kesting, 2013; Saifuzzaman and Zheng, 2014; Sharma, Ali, et al., 

2018). In this section, we focus on driver behaviour models that consider errors in drivers’ 

perception of their surrounding traffic environment.  

Consideration of drivers’ perception errors has long been recognized as an essential 

element for improving the realism of driver behaviour models. For example, Gray and Regan 

(1998) demonstrate that the driver’s perceptions of ‘distances to', ‘velocities of’, and 

‘accelerations of’ other objects are not exact. Wiedemann  (1974) recognizes that drivers 

cannot perceive stimuli below a minimum threshold value and proposes a psychophysical 

driver behaviour model with perception thresholds. Hoogendoorn et al. (2011) use this model 

and present a stochastic car-following model where thresholds are determined empirically from 

vehicle trajectory data. Further, Kikuchi and Chakroborty (1992) use fuzzy sets to represent 

the approximate nature of drivers’ decision processes. Treiber et al. (2006) use the Wiener 

stochastic processes to describe perception errors for relative positions, speeds, and speed 

differences. This study concludes that errors in estimation (perception error) are influential on 
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driver behaviour and affects the performance and stability of the vehicular traffic stream. Van 

Lint et al. (2017) also use the Wiener process to model perception error in their model for 

integrated analysis of lane changing and car-following behaviour. Yang and Peng (2010) 

propose an errorable car-following model that considers human reaction delays, distraction, 

and perception limitations. Using a similar line of thought, Bevrani and Chung  (2012) improve 

Gipps’ (1981) model to accommodate human imperfection in perceiving and processing 

information and executing actions. Even in the context of accident analysis, literature (Ding et 

al., 2019) highlights that accurate perceptions of speeds and distances are critical for avoiding 

crashes.  

 In another stream of literature, random utility maximization-based discrete choice 

models have been used to analyze various aspects of driver behaviour, including 

acceleration/deceleration decisions, lane-changing behaviour, lateral position choices, and gap-

acceptance (Ahmed, 1999; Toledo, 2003; Choudhury, 2007). Additionally, latent variables 

have been used while modelling driver behaviour in the choice modelling literature to represent 

variables unobserved to the analyst such as latent plans, latent intent, latent leaders, and 

reaction time (Choudhury, 2007; Koutsopoulos and Farah, 2012; Choudhury and Islam, 2016); 

however, not to represent drivers’ errors in perceiving the traffic environment variables. 

Almost all these studies consider a single-leader car-following behaviour. Further, most utility-

based choice modelling studies do not consider drivers’ perception errors (except, for example, 

Hamdar et al., 2015). 

Many studies discussed above do not demonstrate evidence of perception error in 

empirical data. They formulate stylized models and conduct simulation and/or numerical 

experiments to understand driver behaviour in the presence of perception error; therefore, the 

empirical evidence available is very limited in this context. Further, current literature does not 

recognize that the level of errors in perception might be different for different variables and 

different surrounding vehicles in the traffic environment. Besides, most studies that consider 

driver’s perception error are in the context of a single-leader car-following setting and in 

homogeneous traffic conditions. Given the lack of lane discipline in heterogeneous traffic 

streams observed in many countries, multiple vehicles around a vehicle, as opposed to a single 

lead vehicle, might influence its driver’s behaviour. In such traffic environments, drivers need 

to perceive and process multiple sources of stimuli for making their manoeuvering decisions. 

Therefore, errors are likely to be prevalent in their perception of traffic environment variables 

such as relative distances and speeds. 
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2.5 SUMMARY OF FINDINGS  

Primarily, MVA based driver behaviour models follow a similar pattern of extending the 

single-leader car-following model by adding weighted stimuli from vehicles ahead. 

Interestingly, the influence of only a fixed number (say 3 or 5) of vehicles ahead is considered 

in these models. Moreover, vehicles far ahead have a low influence on drivers’ manoeuvring 

decisions, and hence, weights on the stimuli decrease as the distance from the subject vehicle 

increases. Furthermore, the type of vehicle ahead (a car or a truck) also influences the MVA 

behaviour of drivers and thereby, their manoeuvring decisions. For example, a car driver 

following a truck is blind to vehicles ahead of the truck (second leader, third leader, etc.) and 

thus, gives low to no weightage to stimuli from those vehicles. Furthermore, incorporating 

perception errors in MVA based driver behaviour models improved the behavioural soundness 

of these models. In addition, all studies have concluded that MVA based models perform better 

in stabilising the traffic and suppressing traffic oscillations than single lead vehicle-based 

models. Treiber et al. (2006) revealed that the model with MVA has a higher threshold for 

traffic stability over the single leader model, i.e., traffic remains stable for higher values of 

reaction times for the model with MVA, which is consistent with real-world traffic 

observations.  

2.6 RELEVANT RESEARCH GAPS 

While there has been a substantial amount of previous research in driver behaviour modelling 

in HD traffic streams, there are still research needs in this area. Specifically, as discussed in 

Section 1.2 of Chapter 1, we identify the following research gaps:  

1. Inadequate consideration of the MVA effect while modelling driver behaviour in HD 

traffic streams, 

2. Limited efforts to consider driver behaviour as a combination of different manoeuvring 

decisions, such as the decision of whether to accelerate, decelerate, or remain in same 

speed (represented as a discrete variable) and the decision of the extent of acceleration 

or deceleration (represented as continuous variables) – as opposed to using a single, 

continuous variable to represent all these facets of driver behaviour,   

3. Inadequate attention to (and lack of methods for) modelling driver’s perception errors 

in MVA-based driver behaviour models, and  
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4. Limited attention to incorporating driver’s two-dimensional (2D) movement in HD 

traffic streams while also considering driver’s intentions (those are latent to the analyst) 

and the MVA effect.  

Section 1.2 of Chapter 1 already discussed these research gaps in detail.  

2.7 CONCLUSIONS 

This chapter provides a review of notable attempts to incorporate MVA in driving behaviour 

models. Multi-vehicle anticipation (MVA) refers to drivers’ ability to consider stimuli from 

several vehicles ahead in their manoeuvring decisions. This chapter reviews models that 

incorporate MVA by a driver in homogeneous traffic conditions and HD traffic conditions. The 

review of the literature made it possible to identify specific gaps that paved the way for the 

objectives of this dissertations. As will be seen in the subsequent chapters, several other 

methodological and empirical contributions have been made in our efforts to achieve the 

objectives of the dissertation.  
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CHAPTER 3 A DISCRETE-CONTINUOUS MULTI-VEHICLE ANTICIPATION 

MODEL OF DRIVING BEHAVIOUR IN HETEROGENEOUS DISORDERLY 

TRAFFIC CONDITIONS 

Abstract 

This chapter proposes a multi-vehicle anticipation-based discrete-continuous choice modelling 

framework for describing driver behaviour in heterogeneous, disorderly (HD) traffic 

conditions. To incorporate multi-vehicle anticipation, the concept of an influence zone around 

a vehicle (subject vehicle) is introduced. Vehicles within the influence zone can potentially 

influence the subject vehicle’s driving behaviour. Further, driving decisions are characterized 

as combination of discrete and continuous components. The discrete component involves the 

decision to accelerate, decelerate, or maintain constant speed and the continuous component 

involves the decision of how much to accelerate or decelerate. A copula-based joint modelling 

framework that allows dependencies between discrete and continuous components is proposed. 

Such a joint modelling framework recognizes that the discrete and continuous decisions are 

made simultaneously, and common unobserved factors influence both decisions. Additionally, 

truncated distributions are employed for the continuous model components to avoid the 

prediction of unrealistically high acceleration or deceleration values. The parameters of the 

proposed model are estimated using a trajectory dataset from Chennai, India. The empirical 

results underscore (a) the importance of considering multi-vehicle anticipation for describing 

driving behaviour in HD traffic conditions, and (b) the efficacy of the joint discrete-continuous 

system for modelling driving behaviour. Further, not all traffic environment variables found to 

influence the discrete decisions were found influential on continuous decisions and vice versa. 

Moreover, the influence of several variables was found to be stronger on the decision to 

accelerate or decelerate than on the decision of how much to accelerate or decelerate. 

 

Note: The material in this chapter is drawn from the following paper: 

Nirmale, S. K., Pinjari, A. R., and Sharma, A. (2021). A discrete-continuous multi-vehicle 

anticipation model of driving behaviour in heterogeneous disordered traffic conditions. 

Transportation Research Part C: Emerging Technologies, 128. 

https://doi.org/10.1016/j.trc.2021.103144 
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3.1 INTRODUCTION  

Microscopic traffic flow models describe the driving behaviour at the individual vehicle level 

by mimicking driver’s decisions to advance in the longitudinal (vehicle-following) and lateral 

directions (lane-changing) (refer to Brackstone et al. (1999), Toledo (2007), Zheng (2014), 

Saifuzzaman and Zheng (2014), and Mahapatra et al. (2018) for a detailed review of 

microscopic traffic flow models). These models are used to perform traffic flow analysis, traffic 

safety analysis, traffic emission estimation and control studies, build traffic simulation tools, 

etc. (Brackstone and McDonald, 1999; Gartner et al., 2001; Park and Won, 2006; Toledo, 2007; 

Saifuzzaman and Zheng, 2014; Daiheng Ni, 2015; Chakroborty and Das, 2017). A majority of 

these models are built for homogeneous traffic conditions and cannot be applied to 

heterogeneous, disorderly (HD) traffic where the traffic characteristics are significantly 

different from the homogeneous traffic conditions (Choudhury and Islam, 2016). HD traffic 

conditions may be characterized by the following three features that are not common to 

homogeneous traffic conditions: (i) a wide variety of vehicles that include motorized two-

wheelers, cars, auto-rickshaws, buses, and trucks; (ii) non-lane discipline in vehicular 

movements; and (iii) a large extent of lateral movements than typically observed in 

homogeneous traffic conditions (Venkatachalam and Gnanavelu, 2009; Kanagaraj et al., 2015; 

Asaithambi et al., 2016; Choudhury and Islam, 2016; Munigety and Mathew, 2016; Kanagaraj 

and Treiber, 2018; Mahapatra et al., 2018; Sarkar et al., 2020). The vehicles have broad 

differences in shapes, sizes, acceleration-deceleration capabilities, and degrees-of-freedom 

contributing to the heterogeneity in their microscopic movement characteristics. Moreover, 

drivers often position themselves in between other vehicles in an attempt to make use of the 

entire available space, thus occupy multiple lanes. Therefore, microscopic vehicular 

movements in HD traffic conditions depict weak to no lane discipline. In summary, the 

interactions among vehicles and the resulting manoeuvres they undertake are much more 

complex in HD traffic conditions (than in homogeneous traffic conditions) necessitating the 

need for developing dedicated microscopic driving behaviour models for such conditions. 

Whether the traffic condition is homogenous or heterogeneous, drivers’ decisions are 

driven by various factors including human factors, traffic environment, and roadway 

infrastructure elements. Human factors are often not given their due importance in microscopic 

traffic flow models which have made them too simple to explain the complex interaction 

between the human driver and the traffic environment (Sharma et al., 2017b). In this context, 

recent studies have demonstrated the significance of incorporating human factors in the 
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microscopic modelling framework to comprehensively describe the driver’s decision-making 

process (Saifuzzaman et al., 2015; Sharma et al., 2017b; J. W. C. van Lint and Calvert, 2018; 

Ali et al., 2019; Paschalidis et al., 2019; Sharma et al., 2019; Calvert et al., 2020). One such 

human factor is multi-vehicle anticipation by the driver. Multi-vehicle anticipation (also known 

as spatial anticipation) refers to a driver’s ability to take several vehicles around his/her vehicle 

into account for making his/her driving decisions. Previous studies argue that considering a 

single lead vehicle as the only influential vehicle may not adequately represent driving 

behaviour (Bexelius, 1968; Lenz et al., 1999; Hoogendoorn and Ossen, 2006; Hoogendoorn et 

al., 2006; Treiber et al., 2006; Peng and Sun, 2010; Zhang, 2014). Moreover, multi-vehicle 

anticipation stabilizes the traffic flow and reduces the destabilizing effect of reaction time 

(Treiber et al., 2007). Multi-vehicle anticipation is still underexplored in the context of HD 

traffic conditions.  

The objective of this chapter is to present a microscopic modelling framework that 

mimics the driving behaviour in the longitudinal direction in HD traffic conditions. 

Importantly, the presented modelling framework incorporates multi-vehicle anticipation by the 

driver.  

The remainder of this chpater is structured as follows. Section 3.2 presents the research 

gaps, and positions the contribution of the current chapter. Section 3.3 discusses the proposed 

modelling framework. Section 3.4 provides an overview of the trajectory dataset, model 

variables, and their descriptive statistics. Section 3.5 presents and discusses the model 

estimation results. Finally, Section 3.6 summarises the main findings of this chapter and 

provides future research directions. 

3.2 RESEARCH GAPS AND THE CURRENT STUDY 

3.2.1 Research Gaps 

Synthesis of the literature provided in Chapter 2 revealed that most studies on modelling driver 

behaviour for HD traffic conditions consider only the effect of a single leader on the subject 

vehicle. Many studies have considered the influence of multiple vehicles positioned ahead of 

the subject vehicle only in the longitudinal direction. However, vehicles that are positioned on 

either side of the subject vehicle as well as those positioned ahead in oblique direction (i.e., 

vehicles that are not directly ahead) can also influence of the subject vehicle driver’s driving 

behaviour.  
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Most driver behaviour modelling studies analyze the longitudinal driving behaviour as 

a single continuum, where the decision to accelerate/decelerate/maintain same speed and the 

decisions on the extent of acceleration or deceleration are all treated as a single continuum. A 

single variable or distribution is used to represent all these decisions by treating a positive rate 

of change of speeds as acceleration and a negative rate of change of speed as deceleration. To 

the best of the authors’ knowledge, only one study separates the decision to accelerate or 

decelerate or maintain same speed (i.e., the discrete decisions) and the extent of these decisions 

(Koutsopoulos and Farah, 2012). Although the discrete decisions and the extent of these 

decisions occur in tandem and without a discernible time lag, it is likely that the cognitive 

efforts required to decide whether to accelerate, decelerate, or remain in same speed (the 

discrete decision) are different from the cognitive efforts needed to determine how much to 

accelerate or decelerate (extent of the decision). Besides, the factors influencing the decision 

on whether to accelerate or decelerate might be different (or have a different influence on) than 

the factors influencing the extent of acceleration or deceleration. Hence, there is a need to treat 

discrete decisions (accelerate or decelerate or remain in same speed) and continuous decisions 

(how much to accelerate or decelerate) separately and model them as separate entities. At the 

same time, it is necessary to model all these decisions in a simultaneous manner considering 

any dependencies among them. This is because several unobserved driver behaviour factors 

can affect both drivers' discrete and continuous choices, causing dependency between the 

mathematical constructs employed to model the decisions. For example, it is possible that 

common unobserved factors that increase the propensity for taking a discrete decision can also 

increase/decrease the extent of that discrete decision. Hence, ignoring the dependency due to 

unobserved factors, if present, can potentially lead to bias in parameter estimates (because of 

the error terms being correlated to explanatory variables), distorted interpretations/conclusions, 

and inferior model fit. These issues motivate the need for joint modelling of discrete and 

continuous decisions.  

Koutsopoulos and Farah (2012)’s model joins the decisions of acceleration or 

deceleration along with the extent of acceleration or deceleration; however, the model was 

developed for homogenous traffic conditions and considers stimulus from a single lead vehicle 

only. To the best of the authors’ knowledge, there has not been much research on modelling 

driver behaviour by considering the multi-vehicle anticipation and also treating the discrete 

decisions and the extent of these decisions as separate but simultaneous (joint) decisions with 

interdependencies.  
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3.2.2 Current Study 

Motivated by the aforementioned research gaps, this chapter proposes a human factors-based 

discrete-continuous choice modelling framework for describing driving behaviour in the 

longitudinal direction under HD traffic conditions. More specifically, a multi-vehicle 

anticipation-based discrete-continuous choice model of longitudinal driving behavior is 

presented.  

To incorporate multi-vehicle anticipation, first, we introduce the concept of an 

influence zone surrounding every subject vehicle. Next, we consider stimuli (such as relative 

speed and space gap) from all vehicles within the influence zone instead of considering stimuli 

only from the immediate lead vehicle. These multiple surrounding vehicles are from the front 

(straight ahead, left front, and right front spaces ahead of the subject vehicle) and the left and 

right sides of the subject vehicle. Further, we consider the lateral gap between the subject 

vehicle and the pavement edge to capture the effect of roadway elements on driving behaviour. 

The aspects of driving behaviour analysed at each instance (i.e., time step) are: (1) the decision 

to accelerate, decelerate, or maintain same speed (a discrete choice component) and (2) the 

extent of acceleration/deceleration conditional on the vehicle’s decision to 

accelerate/decelerate (a continuous choice component). In addition, the dependency between 

the discrete and continuous decisions is captured through a copula-based framework that 

captures correlations due to unobserved factors common to discrete and continuous decisions. 

In reality, drivers cannot accelerate or decelerate at any desired rate due to limited 

physical and operational capabilities of vehicles and due to safety considerations. However, 

most studies that model acceleration or deceleration behaviour treat the acceleration or 

deceleration values as unbounded variables that do not prevent the simulation of unrealistically 

high magnitudes of acceleration or deceleration. In this chapter, we use truncated distributions 

for acceleration and deceleration values to avoid the prediction of unrealistically high 

acceleration or deceleration values. While most models prevent unrealistic acceleration (or 

deceleration) values during simulation, this chapter embeds it within the model structure. 

3.3 METHODOLOGY 

This section discusses the proposed modelling framework under two subsections. In the first 

subsection, the concept of influence zone around a vehicle is discussed in detail. The second 

subsection explains the proposed copula-based joint modelling framework and its estimation 

procedure. 
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3.3.1 Influence Zone  

We define the ‘influence zone’ of a vehicle as a hypothetical zone within which the surrounding 

traffic environment including vehicles, road boundary, stationary traffic control devices, etc. 

influences the driver behaviour. Different sizes and shapes of influence zones may be explored 

and empirically investigated to ascertain which size and shape provide the best statistical fit to 

the observed data as well as the most plausible behavioural insights. However, we restrict 

ourselves to a rectangular influence zone (as shown in Figure 3.1). The reasons behind 

choosing a rectangular-shaped influence zone are as follows: a) road boundaries for straight 

sections can be approximated as two edges of a rectangular shaped influence zone and b) its 

simple geometric properties provide higher computational tractability. For example, one can 

easily divide the rectangular influence zone into different compartments to examine the effect 

of different vehicles on the subject vehicle. For the purpose of demonstration in Figure 3.1, the 

rectangular influence zone is divided into five compartments, namely, middle front (MF), left 

front (LF), right front (RF), right side (RS), and left side (LS) assuming that the subject vehicle 

is at the centre of a three-lane roadway. Refer to Figure 3.1 for a diagrammatic representation 

of these compartments. As the vehicle’s longitudinal position shifts to the left or right of the 

roadway width, the influence zone gets truncated accordingly in that direction. In any case, the 

compartment in the front of the subject vehicle, extending from the subject vehicle’s front 

bumper to the length of the influence zone is always labeled the MF. When the subject vehicle 

is at the extreme left edge of the road, there are only three compartments MF, RF, and RS. For 

the three-lane roadway, the width of the rectangle is approximated to the road pavement width. 

Particularly, the width of MF is approximated to the width of the subject vehicle, and the width 

of RF and RS (LF and LS) compartments are set from the right (left) side of the subject vehicle 

to the right (left) edge of the pavement. Moreover, as shown in Figure 3.1, the back edge of the 

influence zone follows the back bumper of the subject vehicle.  

Next, we also considered the influence of vehicles behind the subject vehicle in this 

study. However, it is very important to disentangle causality from correlations when 

ascertaining the influence of a factor (e.g., vehicles behind subject vehicle) on the behaviour 

of interest (the driving behaviour). Specifically, it is likely that the causal effect of the subject 

vehicles’ actions on that of the vehicles behind them might end up misinterpreted the other way 

round (i.e., as a causal effect of vehicles behind on the subject vehicle). Statistically speaking, 

such opposite causality, if not considered, introduces endogeneity in the model parameters and 

shows as a spurious causal effect. To verify this, we first developed a simple linear model of 
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SV acceleration as a function of stimuli from all the surrounding vehicles, including those from 

behind the SV. With such a model, we performed the Hausman test (Hausman, 1978) to 

examine the endogeneity of the stimuli from the vehicles behind the SV  (Wooldridge, 2012). 

This test indicated that stimuli such as relative speeds with respect to vehicles from behind are 

endogenous to the SV accelerations. That is, in our empirical data, the effect of the stimuli from 

vehicles behind on the SV’s actions should not be interpreted as a causal effect – it is due to 

reverse causal effect of the SV’s actions on the actions of the vehicles behind. Therefore, we 

removed the stimuli from vehicles behind from all subsequent model specifications.  

 

Figure 3.1 Structure of a rectangular influence zone around a subject vehicle 

The next task is to set the length of the rectangular influence zone. In general, the 

spacing threshold within which vehicles are more likely to be in the vehicle following (or car-

following) situation ranges from 30 to 60 m (Herman and Potts, 1959; Subramanian, 1996; 

Panwai and Dia, 2007; Punzo et al., 2011; Kanagaraj et al., 2015; Sharma, Zheng, et al., 2018; 

Sarkar et al., 2020). Given the high-density conditions typically observed in HD traffic 

conditions and to be conservative, we adopt 30 m plus the length of the subject vehicle as the 

length of the rectangular influence zone in this chapter. The length of RS or LS is equal to the 

length of the subject vehicle and the length of RF or LF is equal to the length of influence zone 

minus the length of the subject vehicle. Next, the numbering (i.e., labelling) of a vehicle other 
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than the subject vehicle in the influence zone is based on its longitudinal proximity to the 

subject vehicle and the compartment to which the vehicle belongs. For example, the label MF1 

(MF2) is given to the first closest vehicle (second closest vehicle) in the MF compartment. 

Each immediate surrounding vehicle within the influence zone is considered in the modelling 

framework, whether by the side or at the front of the subject vehicle. In addition, the vehicle 

ahead of the immediate lead vehicle in the middle front zone is also considered as a potentially 

influencing vehicle. Hence, as shown in Figure 3.1, six potentially influencing vehicles are 

present. Microscopic traffic environment variables such as space gap and relative speed of the 

subject vehicle with respect to each of these vehicles (side, right front, left front, and middle 

front) are considered as potential stimuli for the subject vehicle. These are included as 

explanatory variables in the modelling framework. 

3.3.2 Copula-based Joint Modelling Framework: Formulation and Estimation  

Let q  be the index representing a driver and let i  be the index representing the driver’s discrete 

manoeuvring choice alternatives ( a =  accelerate, d =decelerate, s =maintain same speed), at 

a time instance t . Note that we suppress the subscript t  for time instance for ease in notation. 

In the proposed model, the manoeuvring choice model component takes a random utility-based 

discrete choice formulation, and the model component for the extent of the manoeuvre takes 

the form of a truncated normal regression. 

As discussed earlier, dependencies may arise between driver’s discrete and continuous 

decisions due to the presence of common unobserved factors influencing both decisions. Such 

dependencies can be captured through statistical correlations between the stochastic 

components of the equations used to model drivers’ discrete and continuous decisions. In this 

chapter, we use the copula-based approach to incorporate the dependencies. This approach 

accommodates non-linear and asymmetric dependencies between different types of marginal 

distributions (which need not follow the same distribution), while also yielding a closed-form 

expression for the log-likelihood functions to facilitate parameter estimation. By doing so, the 

approach overcomes the limitations of typical approaches that can accommodate only linear 

and symmetric dependencies through linear correlation measures (Pearson’s correlation) 

between marginal distributions of the same type. The copula-based approach has been widely 

applied in various fields such as econometrics (Cameron et al., 2004; Zimmer and Trivedi, 

2006), finance (Embrechts et al., 2002), hydrology (Genest and Favre, 2007) and transportation 

(Bhat and Eluru, 2009; Spissu et al., 2009). In this chapter, we adopted the copula-based joint 



 

 

46 

 

discrete–continuous modelling framework proposed by Spissu et al. (2009) for simultaneous 

modelling of the discrete and continuous decisions in the context of driving behaviour. 

However, the current chapter utilizes truncated distributions for the extent of acceleration and 

deceleration to recognize physical and safety-motivated limits on how much a driver can 

accelerate or decelerate. In this section, we first describe the discrete choice and continuous 

model components separately, followed by the copula-based approach to jointly model the 

decisions. 

Before moving further, it is worth noting that although the driving behaviour is 

characterized as a set of discrete and continuous decisions, the model does not view driving 

behaviour as a sequential or hierarchical process where drivers decide on the discrete decisions 

first and then decide on the continuous decisions. Instead, the copula-based approach is 

employed to jointly model discrete and continuous decisions, where the model views the 

decisions as simultaneous in that both the discrete and continuous decision are made jointly. 

3.3.2.1 Discrete choice component (for the manoeuvring type choice) 

The following equation represents the utility structure of the discrete choice component: 

 *    T

qi i qi qiu x = +   (3.1) 

where, *

qiu  is the utility that the driver of the 
thq  vehicle perceives from choosing a 

manoeuvring decision i ; qix  is a column vector of attributes (including constant) such as 

spacing and relative speed between the subject vehicle and all other vehicles in the influence 

zone, and roadway geometry features that influence the utility for manoeuvring decision i ;  i  

is the corresponding coefficient vector; and qi  is the random error term representing the 

distribution of unobserved factors such as socio-economic characteristics (age, gender, etc.), 

personality traits (aggressiveness), imperfect driving (perception and estimation errors), etc. 

influencing *

qiu . 

A driver of the vehicle q  is assumed to choose a manoeuvring decision i  if it is 

associated with the maximum utility among all manoeuvring decisions; that is, if 
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j a d s j i
v u

= 
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Eq. (3.2) is equivalent to the multinomial discrete choice model. The distributional assumption 

of  qi  determines the form of the discrete choice probability expression. As discussed later, 

this chapter assumes that the qi  terms are distributed IID type I extreme value across i , which 

leads to a multinomial logit (MNL) likelihood expression for the discrete choice component.  

3.3.2.2 Continuous component (for the extent of acceleration/deceleration) 

The model component for the extent of acceleration/deceleration takes the form of the typical 

linear regression model as below: 

    qi i qi

T

qim z = +   (3.4) 

where, qim  is the subject vehicle’s acceleration (deceleration) value at a time instance t  

conditional on the decision to accelerate (decelerate). This variable, in turn, is mapped to 

observed attributes ( )qiz  influencing the extent of acceleration (deceleration) through the 

coefficient vectors i  and a random term qi  that represents the unobserved factors influencing 

the extent of acceleration (deceleration). To avoid unrealistically high or low acceleration and 

deceleration values, we use a truncated normal distribution for qim , which is assumed to arise 

from a normal distribution with scale i .   

3.3.2.3 Copula-based methodology for joint modelling 

A copula is a joint distribution function of standard uniform univariate marginals [0,1]U  that 

associates a stochastic multivariate relationship among the univariate marginals. Given two 

random variables ( )1 2,B B  with marginal cumulative distribution functions ( ) ( )( )1 1 2 2,  Fb bF , 

their joint bivariate distribution can be represented as follows: 

 ( ) ( ) ( )( )1 2 1 1 1 2 2 2  , ,   F b b C u F u Fb b= = =   (3.5) 
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Here, C  (copula) is a CDF function which joins ( )1 1F b  and ( )2 2F b into a joint distribution.  

The individual model components described earlier are brought together, and the likelihood 

expression of the joint model for a sample of Q  vehicles ( ) 1,2, ,q Q=   is represented as 

below:  s 

 ( ) ( ) 
1 1

   |  
qiT T

iqi i qi qi i q

i

i

Q I R

q

q

L P P m jx v x iv  
= =

 
=    −

 
  −    (3.6) 

where,   1 qiR =  if the driver of the 
thq  vehicle chooses alternative i , otherwise 0.qiR =  I

represents total number of alternatives.  

3.3.3 Model Estimation  

Let 
qi i qi

i

Tm z
h







−
= . Hence, the conditional likelihood in Eq. (3.6) can be represented as:  
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A detailed derivation of the above expression is provided in the appendix. As 
qi i qi

i

Tm z
h







−
= , 

qi

i qi

i

m
h h m







 =   =  . Therefore, the joint density in Eq. (3.7) can be expressed as: 

 ( ) ( ),, ,
1

qi qi
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qi i qi vqi i qi

i

P hh F
h
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



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
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where 
,qi qivF  represents joint cumulative distribution between random variables qiv  and qi .  

Now, ( )qiP h =  can be expressed as: 

 ( ) ( )
1

qi i

i

P hh f





= =   (3.9) 

Using Equations (3.8) and (3.9), we can express Eq. (3.7) as below:  

( ) ( ) ( ) ( )
1

,

1 1
|       ,  

qi qiqi i

i i
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Let the marginal distributions of  qiv  and qi  be ( )  .viF  and  ( )  .iF , respectively, and the joint 

distribution of qiv  and qi  be  ( ),   .,.vi iF  . Subsequently, consider ( ), 1 2  ,vi iF y y , which can be 

expressed as a joint cumulative probability distribution of uniform [0,1]  marginal variables 1U  

and 2U  as below: 
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1 1
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  (3.11) 

Using Sklar’s (1973) theorem, a joint K-dimensional distribution of random variables with the 

continuous marginal CDF functions ( )k kF y  can be generated as below2: 
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  (3.12) 

Using above theorem, the joint distribution ( ), ,
qi qi

T

v i qiF hx −  can be expressed by function 

(.,.)C  such that: 

 ( ) ( )( )'

, 1 2, , ( )
qi qi qi qi

T

v i qi v i

i

iq q

i

qF ux h xC u F F h   =− = −=   (3.13) 

where ( )  .,.C  is a copula function and   is a scalar dependency parameter. This function 

characterizes the dependency between qiv  and qi . The joint distribution developed in an 

above-discussed manner is used to derive the likelihood expression. As 2 ( )
qi

i

qu F h= , we can 

write:   
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2For better understanding, 
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Eq. (3.10) can be expressed using Equations (3.13) and (3.14) as below (see Appendix A for 

details):   

( ) ( ) ( )
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Now, substituting Eq. (3.15) into Eq. (3.6), we get 
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A detailed derivation of the above expression is provided in the Appendix A. A truncated 

normal regression is used to model the continuous part, 
2

i

qu  and can be represented as below:   
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where iL  and iU  are the lower and upper bounds, respectively, on qim . In the empirical context 

of this chapter, only two discrete choice alternatives – acceleration and deceleration – have a 

continuous component. Therefore, the log-likelihood function can be written as follows:  
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where,   1qaR =  if a driver of 
thq  vehicle takes the acceleration decision, 0 otherwise; 1qdR =  

if a driver of 
thq  vehicle takes the deceleration decision, 0 otherwise; and 1qsR =  if a driver of 

thq  vehicle maintains a constant speed, 0 otherwise. 

3.3.3.1 Copula dependence measure 

Different copulas offer different levels of ability to capture the dependency between random 

variables based on the Fréchet–Hoeffding bounds (Bhat and Eluru, 2009). It is useful to 

construct a scalar metric to measure and compare the dependency implied by different copulas. 

Traditionally, Pearson’s correlation coefficient is used to measure linear dependence between 

random variables. However, it does not capture asymmetric dependency among random 

variables. This limitation has led to the use of the concordance measure approach to describe 

the dependency. Two random variables are said to be concordant (discordant) if large values 

of one random variable are related to large (small) values of another random variable, and small 

values of one variable are related to the small (large) values of another random variable. This 

results in a dependency measure called Kendall’s τ, which is defined as the probability of 

concordance minus the probability of discordance. Kendall’s τ satisfies the properties required 

by Embrechts et al.  (2002) for assessing the dependency between random variables, such as 

taking the zero value for independence (i.e., no dependency). Hence, this chapter uses 

Kendall’s τ to characterize and compare the dependency structure. Refer to Embrechts et al. 

(2002) and Bhat and Eluru (2009) for a detailed discussion on different copulas and their 

implied dependency measures.  

3.4 DATA AND VARIABLES CONSIDERED IN THE MODEL 

3.4.1 Data 

The dataset is a traffic video data of 30 minutes, originally processed by Kanagaraj et al. 

(2015), from an urban arterial stretch in Chennai with HD traffic conditions. This is a straight 

stretch of 245 meters length and 11.2 meters width (and without any entry or exit locations 

within or nearby). The processed data include individual trajectories of 3005 vehicles (26.6% 

cars, 56.4% two-wheelers, and 17% other vehicles such as autorickshaws, trucks, and buses), 

with each vehicle’s trajectory including the spatial position, speed, and 

acceleration/deceleration values in both the longitudinal and lateral directions at a 0.5 s 

resolution.  
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3.4.2 Description of the Explanatory Variables Considered   

To analyze a driver’s decision to accelerate, decelerate, or maintain constant speed and the 

extent of acceleration or deceleration at a time instance t  s, we considered a variety of traffic 

environment variables at 0.5t −  s as sources of stimuli3. These variables can be broadly 

classified into eight groups, as discussed below, and mentioned in Table 3.1. 

3.4.2.1 Subject vehicle characteristics 

This group includes the subject vehicle’s longitudinal speed. As widely recognized in the 

literature, a vehicle moving at a higher speed is more (less) likely to decelerate (accelerate) and 

exhibit a higher (lower) magnitude of deceleration (acceleration) than a vehicle moving at a 

slower speed.  

3.4.2.2 Stimuli from the first vehicle in the MF compartment (MF1)  

These variables include longitudinal space gap and longitudinal speed difference between the 

subject vehicle and MF1, MF1 vehicle type (which can modify the stimulus), an interaction 

between vehicle type and the space gap, and an interaction between vehicle type and the relative 

speed. A vehicle is more likely to accelerate and have higher acceleration value for larger 

spacing and higher relative speeds (Chandler et al., 1958; Gazis et al., 1959; Edie, 1961; Gazis 

et al., 1961; May and Keller, 1967; Ahmed, 1999; Toledo, 2003; Choudhury, 2007; 

Koutsopoulos and Farah, 2012; L. Li  et al., 2013). To account for the indirect influence of the 

second lead vehicle on the subject vehicle, we considered the acceleration of MF1 at t  s as an 

explanatory variable. The subject vehicle is more likely to accelerate (decelerate) if MF1 has 

been accelerating (decelerating).  

3.4.2.3 Stimuli from the second lead vehicle in the MF compartment (MF2)  

This group includes a dummy variable (DM2) for the presence of two or more lead vehicles in 

the MF compartment, an interaction variable between DM2 and the longitudinal space gap with 

respect to MF2, and another interaction variable between DM2 and the longitudinal speed 

difference with respect to MF2. If MF2 is travelling closer to the subject vehicle and at a slower 

speed than the subject vehicle, the subject vehicle is more likely to decelerate with a higher 

 
3 To determine the update time, linear regression models of the observed acceleration values as a function of 

explanatory variables were built considering different update times – ranging from 0.5 s to 2 s. The model with 

0.5 s update time provided the best fit to data and the most intuitive interpretations of the parameter estimates. 

Therefore, an update time of 0.5 s is used in this chapter. 
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extent of deceleration. Further, the influence of MF2 on the subject vehicle is likely to be less 

than that of MF1.   

3.4.2.4 Stimuli from the first lead vehicle in the LF compartment (LF1)  

This category includes the following variables a) a dummy variable (DL1) for the presence of 

one or more vehicles in the LF compartment, b) an interaction between DL1 and the 

longitudinal space gap with respect to LF1, c) an interaction between DL1 and the longitudinal 

speed difference with respect to LF1 and d) an interaction between DL1 and the lateral gap 

between LF1 and MF1. It is likely that the subject driver chooses to decelerate (and decelerate 

more) if one or more lead vehicles are present in the LF compartment. In addition, if these lead 

vehicles are nearby the subject vehicle and are moving at a lower speed, the extent of 

deceleration is likely to increase. In the same situation, the extent of acceleration is expected 

to be less if the subject driver accelerates. 

3.4.2.5 Stimuli from the first lead vehicle in the RF compartment (RF1)  

These variables include a) a dummy variable (DR1) for the presence of one or more lead 

vehicles in the RF compartment, b) an interaction between DR1 and the longitudinal space gap 

with respect to RF1, c) an interaction between DR1 and the longitudinal speed difference with 

respect to RF1, and d) an interaction between DR1 and the lateral gap between the RF1 and 

MF1. The subject vehicle’s driver is likely to decelerate and decelerate more if one or more 

lead vehicles are present in the RF compartment. Additionally, an increase in the magnitude of 

deceleration is expected if they are located close to the subject vehicle.   

3.4.2.6 Stimuli from the first side vehicle in the LS compartment (LS1)  

This group includes a dummy variable (DLS1) to indicate the presence of one or more side 

vehicles in the LS compartment, an interaction between DLS1 and the lateral space gap 

between the subject vehicle and LS1, and an interaction between DLS1 and the longitudinal 

speed difference with respect to LS1. The extent of acceleration is likely to be less if LS1 is 

laterally closer to the subject vehicle. The speed difference between LS1 and the subject vehicle 

might also have impact on subject vehicle’s decisions.  

3.4.2.7 Stimuli from the first side vehicle in the RS compartment (RS1)  

The stimuli in this group are a dummy variable for the presence of one or more side vehicles 

in the RS compartment (DRS1), an interaction between DRS1 and the lateral space gap 

between the subject vehicle and RS1, and an interaction between DRS1 and longitudinal speed 

difference with respect to RS1. The extent of deceleration is expected to be high if RS1 is 
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located closer to the subject vehicle while, in the case of acceleration, the magnitude of the 

acceleration is expected to be low. Same as LS1, the longitudinal speed difference between 

RS1 and the subject vehicle might influence the subject vehicle’s manuevouring decisions.  

3.4.2.8 Road geometry characteristics 

Road geometry and other elements such as proximity to the road edge, lane demarcations, 

curves, and surface deformities also influence driver’s manoeuvring actions (Maurya, 2007a; 

Oviedo-Trespalacios et al., 2017). In this chapter, the subject vehicle’s proximity to the left 

edge of the road (i.e., space gap between the left edge of the subject vehicle and the left edge 

of the road) was included to explore it’s influence on driver behaviour. It is anticipated that 

vehicles closer to the left edge drive slower than those away from the edge. It is worth noting 

that the proximity of a vehicle to the left edge of the road can potentially be endogenous to its 

driver behavior. This is because, in the Indian context, vehicles that intend to travel slow tend 

to keep to the left of the road. Therefore, one must test the endogeneity of this variable before 

making inferences on the causal influence of proximity a vehicle to the left edge on its driver 

behaviour.  

3.4.3 Descriptive Statistics 

The key descriptive statistics of the processed trajectory dataset are given in Table 3.1. As can 

be observed from the table, in most instances, the subject vehicle in HD traffic condition has 

at least one vehicle in the LF compartment, possibly because cars typically tend to travel on 

the right side of the road. Furthermore, the shares of acceleration, deceleration, and maintain 

same speed states in the Chennai data set are 42.1%, 45.3%, and 12.6%, respectively. This 

chapter defines acceleration, deceleration, and constant speed (or maintain same speed) states 

based on following cut-off values of observed acceleration: (a) observed acceleration greater 

than +0.1 m/s2 is defined as acceleration state, (b) observed acceleration less than -0.1 m/s2 is 

defined as deceleration state, and (c) observed acceleration between -0.1 m/s2 and +0.1 m/s2 is 

defined as constant speed (or maintain same speed) state. In addition, we explored Ozaki’s 

(1993) definition as well, where vehicles accelerating within ±0.05g, where g = 9.8 m/s2, were 

considered to be in the constant speed state. Based on this definition, share of acceleration, 

deceleration, and constant speed states in the Chennai data set are 22.46 %, 23.54 %, and 54.00 

%, respectively. It is worth noting here that using Ozaki’s definition results in classification of 

more than half of the data into the constant speed state, which is not likely to be the case in the 

current empirical context.  
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3.5 MODEL ESTIMATION RESULTS AND DISCUSSION 

The model parameters were estimated using the maximum likelihood approach. A variety of 

empirical models were estimated, including independent models and different copula-based 

joint models. The independent model ignores dependencies between the discrete choice and 

continuous choice components. In the joint model, seven different copulas – Gaussian, FGM, 

Frank, Gumbel, Clayton, Joe, and AMH copulas – were explored to accommodate 

dependencies between the discrete and continuous choice components. For modelling the 

extent of acceleration or deceleration, we explored both unbounded normal and truncated 

normal distributions to determine which distribution results in and better fit and more 

behaviourally plausible parameter estimates. 

To estimate the model parameters, the manoeuvring decisions of the subject vehicle 

needs to be determined from the observed data. As mentioned earlier, this chapter classifies 

various states based on the following cut-off values of acceleration: acceleration greater than 

+0.1 m/s2 is defined as acceleration state, acceleration less than -0.1 m/s2 is defined as 

deceleration state, and acceleration between -0.1 m/s2 to +0.1 m/s2 is defined as constant speed 

state. We also considered the definition by Ozaki (1993), where the maintain same speed state 

is defined by acceleration values within ±0.05g. However, some of the estimated model 

parameters were not behaviourally consistent when we considered Ozaki’s (1993) cut-off 

values. Hence, we do not present and discuss the results based on Ozaki’s definition for 

constant speed. 

The literature suggests using +4.00 m/s2 as upper bound for acceleration and -4.50 m/s2 

as upper bound for deceleration when calibrating the car-following models (HCM, 2000; 

Saifuzzaman et al., 2015; Sharma et al., 2019). In this chapter, we used +4.15 m/s2 as upper 

bound for acceleration and -4.5 m/s2 as upper bound for deceleration. The reason for not 

considering +4.00 m/s2 as the upper bound for acceleration is that we observed acceleration 

values up to +4.15 m/s2 in the trajectory data. Therefore, considering only +4.00 m/s2 as the 

upper bound would require us to discard a good amount of data with acceleration between 

+4.00 m/s2 and +4.15 m/s2. Therefore, the final truncation thresholds used in this chapter are [-

4.5, -0.1) for deceleration, [-0.1, +0.1] for maintain constant speed, and (+0.1, +4.15] for 

acceleration.   
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Table 3.1 Descriptive statistics of explanatory variables* 

Variables 
HD traffic conditions 

Mean Std. dev. Percentage 

Dependent variable at t s    
Acceleration decision  -- -- 42.10 

Deceleration decision -- -- 45.30 

Maintain same speed decision  -- -- 12.60 

Number of vehicles in different compartments of the influence zone     
Subject vehicle has 1 or more vehicles in the middle front (MF) compartment  -- -- 100.00 

Subject vehicle has 2 or more vehicles in the MF compartment  -- -- 39.40 

Subject vehicle has 1 or more vehicles in the left front (LF) compartment  -- -- 89.50 

Subject vehicle has 1 or more vehicles in the right front (RF) compartment  -- -- 48.92 

Subject vehicle has 1 or more vehicles in the left side (LS) compartment  -- -- 47.05 

Subject vehicle has 1 or more vehicles in the right side (RS) compartment  -- -- 22.20 

Type of lead vehicle as a motorcycle in MF compartment   27.30 

Subject vehicle (SV) characteristics at t-0.5 s    

Speed in longitudinal direction (m/s) 6.17 1.27 -- 

Stimuli from MF1 (first vehicle in MF) at t-0.5 s     
Space gap in longitudinal direction (m) 13.94 7.12 -- 

Relative speed in longitudinal direction (m/s) 0.06 2.70 -- 

Acceleration at t s (m/s2) -0.02 0.85 -- 

Stimuli from MF2 (second vehicle in MF) at t-0.5 s    
Space gap in longitudinal direction (m) 20.99 5.96 -- 

Relative speed in longitudinal direction (m/s) 0.18 2.86 -- 

Stimuli from LF1 (first vehicle in LF) at t-0.5 s    
Space gap in longitudinal direction (m) 8.65 6.94 -- 

Lateral gap between MF1 and LF1 (m) 2.23 1.32 -- 

Relative speed in longitudinal direction (m/s) -0.88 3.12 -- 

Stimuli from RF1 (first vehicle in RF) at t-0.5 s    
Space gap in longitudinal direction (m) 10.91 8.14 -- 

Lateral gap between MF1 and RF1 (m) 1.70 1.10 -- 

Relative speed in longitudinal direction (m/s) 0.67 3.28 -- 

Stimuli from LS1 (first vehicle in LS) at t-0.5 s    
Space gap in lateral direction (m) 2.79 1.51 -- 

Relative speed in longitudinal direction (m/s) -0.86 3.33 -- 

Stimuli from RS1 (first vehicle in RS) at t-0.5 s    
Space gap in lateral direction (m) 1.65 0.94 -- 

Relative speed in longitudinal direction (m/s) 0.63 3.31 -- 

Road geometry characteristics at t-0.5 s    
Space gap between left edge of the subject vehicle and left edge of the road (m) 6.31 1.89 -- 

Total number of cases 17852 
*Mean and standard deviation of variables with respect to surrounding vehicles are calculated when vehicles are present in the respective compartment 
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3.5.1 Model Selection 

Table 3.2 provides the model fit results for independent and joint models with single leader 

specifications and multiple leader specifications for unbounded normal and truncated normal 

distributions of acceleration and deceleration values. This table also presents the statistics for 

joint models with different copulas. The single leader model specification includes the speed 

of the subject vehicle, space headway, and relative speed with respect to the immediate lead 

vehicle, whereas the model with multi-vehicle anticipation considers stimuli from all vehicles 

that are in the influence zone along with the road geometry characteristics. The different 

estimated models are not necessarily nested into each other with one as the special case of the 

other. Therefore, the traditional likelihood ratio test is not applicable to compare the models. 

Hence, the Bayesian Information Criterion (BIC) metric is employed to compare data fit of the 

different models. The BIC is formally defined as follows:  

 ( ) ( )ˆln 2BIC K n LL = −  (3.20) 

where, ( )ˆLL   is the log-likelihood value at convergence; K  is the number of parameters in 

the proposed model; and n  is number of data points.  

A comparison of BIC values suggests that models with multi-vehicle anticipation 

perform better (lower BIC values) compared to the single leader model specification. Similarly, 

models with truncated normal distributions of acceleration and deceleration values perform 

much better compared to those with unbounded acceleration and deceleration values. Since 

models with truncation on acceleration and deceleration values provided a better fit than those 

with unbounded normal distributions, we explored these models for further analysis. Overall, 

the Frank copula-based joint model with truncated normal distributions for acceleration and 

deceleration values was found to be the best model with the lowest BIC value for the observed 

data. We also employ an adjusted rho-squared metric, which is used to describe the goodness 

of fit for statistical models. The adjusted rho-squared is given by:  
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 (3.21) 

where, ( )ˆLL   is the log-likelihood value at convergence. ( )LL C  is the log-likelihood value 

of the constant-only model. K  and CK  are the number of parameters in the proposed model 
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and the constant-only model, respectively. As can be observed from Table 3.2,  the Frank 

copula model provides the highest adjusted rho-square value. 

Table 3.3 reports the Kendall’s τ  values used to examine the level of dependency due 

to unobserved factors influencing the discrete and continuous decisions. As can be noted from 

the Kendall’s τ  ranges in the table, not all copulas allow the full possible range of dependency. 

The Gaussian, FGM, Frank, AMH copulas allow both positive and negative dependencies, 

whereas the other copulas in the table recognize only positive dependency. Further, the FGM 

copula allows τ  values of only up to  2/9, whereas the AMH copula allows a maximum τ  

value of 1/3. Such models that allow only positive dependency or those that allow a limited 

level of dependency provide a poor fit to observed data as evidenced from the BIC values in 

Table 3.2. Further, models with Joe and AMH copulas were encountered with estimation 

difficulties because of the limited range of the dependency allowed.  

Table 3.2 Estimation results with unbounded normal and truncated normal distributions of 

acceleration/deceleration values* 

Joint model with 

different copula 
Specifications 

Copula dependency parameter  

(t-statistics) 
Loglikelihood 

at 

convergence 

BIC 

value 

Adjusted 

rho-

square Acceleration Deceleration 

Unbounded normal distributions of acceleration/deceleration values 

Independent 
SL - - -28972.55 58121.32 0.10 

ML - - -28244.72 57076.83 0.12 

Frank copula 
SL -4.36 (-16.71) -4.518 (-20.02) -28221.51 56619.24 0.12 

ML -4.48 (-17.43) -4.523 (-20.42) -27506.00 55618.98 0.14 

Clayton copula 
SL 8.38 (11.34) 9.266 (11.71) -28043.35 56262.92 0.13 

ML 3.05 (62.89) 2.975 (70.42) -27724.51 56056.00 0.14 

Joe copula 
SL 1.00 (10.79) 1.001 (14.84) -28972.55 58121.32 0.10 

ML 1.00 (13.39) 1.001 (16.72) -28191.34 57175.66 0.12 

AMH copula 
SL -0.97 (-29.94) -1.000 (-17.64) -28562.49 57301.20 0.11 

ML -0.877 (20.8) -0.961 (-32.33) -27906.25 56458.63 0.13 

Truncated normal distributions of acceleration/deceleration values 

Independent 
SL -- -- -24839.63 49855.48 0.11 

ML -- -- -24131.08 48898.51 0.13 

Gaussian copula 
SL -0.77 (-33.16) -0.82 (-39.10) -25064.92 50306.06 0.10 

ML -0.65 (-29.09) -0.69 (-55.89) -24437.07 49422.37 0.12 

FGM copula 
SL -0.99 (-15.37) -1.00 (-20.42) -24832.49 49841.20 0.11 

ML -0.77 (-14.50) -0.84 (-29.54) -24118.23 48931.54 0.13 

Frank copula 
SL -4.65 (11.97) -5.20 (16.09) -24726.27 49628.76 0.11 

ML -4.23 (12.68) -4.99 (17.73) -24033.43 48673.84 0.14 

Gumbel copula 
SL 1.00 (15.13) 2.19 (15.73) -24867.12 49910.46 0.11 

ML 1.00 (17.58) 1.00 (21.93) -24120.73 48965.91 0.13 

Clayton copula 
SL 2.40 (21.32) 2.49 (23.70) -24900.68 49977.59 0.11 

ML 2.27 (23.53) 2.42 (24.63) -24329.78 49178.42 0.13 

SL-Single leader specification, ML- Multiple leader specification, *The joint copula models with 

convergence problem are not reported in the table.  
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The Kendall’s τ  values from the models that allow both positive and negative 

dependency (Gaussian, FGM, and Frank copula models) reveal that all the dependency 

parameters are significantly different from zero, indicating a significant presence of 

unobserved factors that affect drivers' discrete manoeuvring decisions and the extent of 

acceleration/deceleration. The most striking result is the negative dependency (or the negative 

Kendall’s τ  value) suggesting that the unobserved factors that increase (decrease) the 

propensity to choose a discrete decision make the driver decrease (increase) the extent of that 

discrete decision.  

Table 3.3 Kendall’s dependency measure for different copulas 

Copula 
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CP-Convergence problems encountered in estimating the model 

We found similar results when we used Ozaki’s (1993) cut-off value of ±0.05g for 

acceleration magnitude to decide instances of constant speed following. This consistent result 

across various settings implies that the unobserved factors that make a driver accelerate or 

decelerate more frequently (less frequently) also make that driver to accelerate or decelerate 

less (more). The negative dependency can be explained based on unobserved factors such as 
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driver aggressiveness, as follows. As aggressive drivers aim for small gaps with respect to their 

lead vehicles (Tasca, 2000; Lajunen and Parker, 2001; Abou-Zeid et al., 2011), they tend to 

accelerate and decelerate more frequently than other vehicles (Ahn and Rakha, 2009). 

Aggressive drivers do not let the space gap grow much by frequently accelerating to close in 

on their lead vehicles and then decelerating to maintain the gap. Since such behaviour makes 

them accelerate and decelerate more frequently and maintain close gaps, the amount of 

acceleration or deceleration they can attain at any instance tends to be smaller than that of other 

drivers who tend to wait for longer gaps. Next, one can observe from Table 3.3 that the 

magnitude of Kendall’s τ  value is slightly higher for the dependency between the deceleration 

decision and the extent of deceleration (than that for acceleration related decisions), suggesting 

that there is a higher level of dependency associated with the deceleration related decisions 

than that with acceleration related decisions.  

3.5.2 Final Model Estimation Results and Discussion 

Since the Frank copula model provides the best fit to observed data as well as more 

behaviourally plausible interpretations, we discuss the estimation results of that model in detail 

and compare it with the independent model. The estimation results of the independent model 

and joint model with Frank copula are provided in Table 3.4. 

A comparison between the Frank copula and independent models suggests that the 

parameter estimates from the copula-based joint model have lower t-statistic values when 

compared to those in the independent model. This is especially so for the continuous 

components of the model (i.e., for the parameter estimates corresponding to the extent of 

acceleration and the extent of deceleration). Also, although not reported here, a comparison of 

various copula-based joint models reveals that the t-statistic values of parameter estimates in 

the continuous component were found to be smaller for models with stronger copula 

dependency values. This implies that ignoring negative dependency between the discrete and 

continuous components may lead to overestimation of the influence of some factors (along 

with their t-statistic values) on the extent of acceleration or deceleration. This may also lead to 

a false conclusion that the parameter estimates are more precise. Hence, there will be a 

tendency not to reject the null hypothesis (parameter does not have an impact on driver’s 

decisions) when it should be rejected. Another point to note is that not all factors that influence 

the discrete decision (accelerate, decelerate, or maintain constant speed) influence the 

continuous decisions (how much to accelerate or decelerate) or vice versa. In essence, this 



 

 

61 

 

discussion highlights the need to model the discrete and continuous components of driver 

behaviour decisions separately but also reinforces the case for considering the dependency 

between discrete and continuous decisions. Moreover, the joint model is parsimonious (three 

less parameters than those in the independent model) and at the same time offers greater 

explanatory power than the independent model, as indicated by goodness of fit metrics at the 

end of Table 3.4.  

Now, we discuss the influence of different variables on a subject vehicle driver’s 

decisions. In line with expectation, the parameter estimates of the subject vehicle speed variable 

suggest that vehicles travelling at slower longitudinal speeds are more likely to accelerate (and 

accelerate more) than vehicles travelling at higher speeds. Similar findings are reported in Siuhi 

(2009) and Subramanian (1996). Next, the parameter estimates for space headway with respect 

to MF1 are statistically significant at 1% level of significance for the decisions to accelerate, 

decelerate, and the extent of acceleration. These results indicate that the subject vehicle is more 

likely to accelerate and have a higher acceleration value for larger space gaps with respect to 

the MF1. On the other hand, smaller space gaps make the driver more likely to decelerate and 

decelerate more. The consideration of dependency between discrete and continuous decisions 

makes space headway less influential on the extent of deceleration (this parameter had a 

stronger influence with a higher t-statistic value in the independent model). Next, the parameter 

estimates of the relative speed are statically significant at 1% significance level in all discrete 

and continuous decisions with consistent signs as expected. A positive parameter in 

acceleration decisions (negative parameter in deceleration decisions) suggests that the subject 

vehicle is more likely to accelerate (decelerate) and accelerate (decelerate) more when MF1 is 

moving faster than the subject vehicle. The findings are also consistent with those in 

Koutsopoulos and Farah (2012) in the context of the discrete decision of whether to accelerate 

or decelerate. For example, the probability of acceleration state increases with an increase in 

the relative speed between the lead vehicle and the following vehicle.  

We have also considered the indirect effect of MF2 (in addition to the direct effect of 

MF2 discussed later) on the subject vehicle by considering the acceleration of the MF1. It can 

be seen from Table 3.4 that this variable is statistically significant at 1% significance level in 

the decision to accelerate, decision to decelerate and the extent of acceleration. The sign of the 

parameter estimate for this variable is positive in both acceleration decisions and the extent of 

acceleration, whereas negative in the decision to decelerate. This indicates that the subject 
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vehicle is more likely to accelerate and accelerate more when MF1 is accelerating, and the 

subject vehicle is more likely to decelerate when MF1 is decelerating. 

Furthermore, the effect of the type of immediate lead vehicle was also examined. The 

parameter for interaction between vehicle type of MF1 and space gap with respect to MF1 has 

a negative coefficient in the decision to accelerate and the extent of acceleration indicating that 

the subject vehicle is less likely to accelerate and would accelerate less if MF1 is motorcycle 

instead of other vehicle types. Similar conclusions can be made for the interaction variable 

between vehicle type and the relative speed with respect to MF1. Choudhury and Islam (2016) 

and Ravishankar and Mathew (2011) also report similar influences of the type of lead vehicles 

on drivers’ extent of acceleration. 

The estimation results reveal that six out of twelve parameter estimates on the variables 

related to MF2 are statistically significant. Importantly, no parameter estimate is statistically 

significant in the extent of deceleration, implying that the presence of a second lead vehicle 

does not impact the extent of deceleration. Similar observations can be made in the context of 

variables related to LF1, RF1, LS1 and RS1. Specifically, the extent of deceleration is not 

influenced as much by the variables corresponding to all these vehicles than by the variables 

corresponding to MF1. That is, drivers’ decisions on the extent of acceleration are governed by 

multiple vehicles ahead, whereas their decisions on the extent of deceleration are likely to be 

affected much more by the immediate lead vehicle than that of other vehicles in the influence 

zone. Several studies (Bexelius, 1968; Lenz et al., 1999; Hoogendoorn and Ossen, 2006) also 

confirm that drivers respond to the multiple vehicles directly ahead, but we are not aware of 

studies that report such nuanced findings for the influence of different lead vehicles on driving 

behaviours. Furthermore, the independent model estimated in this chapter spuriously shows 

the influence of variables related MF2 on the extent of subject vehicle’s deceleration. The joint 

model, on the other hand, shows no influence of variables related to MF2 on the extent of 

deceleration. These results highlight the need for considering dependency between discrete and 

continuous decisions of whether to accelerate/decelerate and how much to do so. 

We now turn to the effect of the vehicles in the left front (LF1), right front (RF1), left 

side (LS1), and right side (RS1) on the subject vehicle’s driving behaviour. For each of these 

vehicles, the parameter estimates reported in Table 3.4 are in line with our expectations. For 

example, the parameter estimates for the relative speed with respect to LF1 and those with 

respect to RF1 take a positive sign in the decisions to accelerate and the extent of acceleration. 
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This implies that the likelihood of acceleration increases with an increase in relative speed 

between the influencing vehicles (LF1 and RF1) and the subject vehicle. Furthermore, the 

parameter estimates related to the lateral gap with respect to LS1 indicate that larger (smaller) 

space gaps are associated with a higher (lower) likelihood of acceleration as well as higher 

(lower) extent of acceleration. Additionally, the parameter estimates of relative speed with 

respect to LS1 suggest that drivers are less likely to decelerate and the extent of acceleration 

increases with an increase in the relative speed between LS1 and the subject vehicle. Also, the 

parameter estimate for relative speed with respect to RS1 indicates that an increase in the 

relative speed with respect to RS1 decreases the extent of deceleration. Such findings indicate 

that drivers’ anticipation of traffic situation and their response depends on vehicles on the side 

in addition to vehicles ahead. Hence, one can conclude that vehicles, which are in the left front, 

right front, left side and right side, are also likely to affect a driver’s decisions. 

The gap between the subject vehicle and the left edge of the road was also found to 

have a significant influence on driving decisions. A smaller gap between the vehicle and the 

road edge makes car drivers tend to decelerate more. This is intuitively aligned with our 

expectations since in HD traffic scenarios, for example, in the Indian driving context, low speed 

traffic opts the left side of the road whereas high speed traffic is on the right side. As discussed 

earlier, this variable can potentially be endogenous to drivers’ decisions to acceleration and 

deceleration. To correct for such endogeneity, we used the control function method. 

Specifically, we first regressed the vehicles’ distance to the road's left and then used the residual 

from this regression as another variable in the copula-based joint model. The coefficient of the 

residual turned out to be statistically insignificant in both discrete and continuous decision 

equations of the joint model. Therefore, we dropped the endogeneity correction from the final 

specification of the proposed model. 

It is worth noting here that one cannot include another variable titled gap from the right 

edge of the road, as such a model cannot be identified since the gap to the left edge and that to 

the right edge (along with vehicle width) would add up to a constant (road width). Importantly, 

the modelling framework is general enough to allow for the inclusion of roadway geometry 

elements such as spacing from the curb, presence and spacing of any fixed objects on the road, 

and irregularities in the geometry as more empirical data becomes available from such varied 

conditions. 
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To further demonstrate the importance of considering multi-vehicle anticipation, 

additional empirical models were estimated by cumulatively including stimuli from one vehicle 

at a time until all stimuli from all surrounding vehicles in the influence zone were included in 

the model. Log-likelihood ratio tests were performed to compare these different models (see 

Table 3.5). As can be observed from the test results in Table 3.5, considering the influence of 

multiple vehicles improves the model fit. In fact, the model fit improved due to the 

consideration of each (and every) additional influencing vehicle. This observation underscores 

the importance of considering multiple-vehicle anticipation in driver behaviour modelling. 

This finding also validates the existence of the influence zone for each vehicle. 

The empirical model presented here extends the current understanding of driving 

behaviour in HD traffic conditions. The results underscore the importance of considering multi-

vehicle anticipation to model driving behaviour, where multiple vehicles within the influence 

zone of the subject vehicle influences its driver’s decisions. Doing so can help improve the 

realism of driver behaviour models for HD traffic traffic streams. Further, the literature 

identifies other advantages of considering multi-vehicle anticipation such as an increase in the 

stability of traffic flow, compensation for the adverse effect induced by reaction delays, and 

better representation of fundamental traffic flow diagrams (Lenz et al., 1999; Treiber et al., 

2006; Wang et al., 2006; Ossen, 2008; Peng and Sun, 2010).  

Moreover, as driver behaviour models are vital for traffic flow analysis, traffic safety 

analysis, and traffic emissions estimation, employing the proposed model can assist in getting 

more realistic results from such analyses. Given the potential gains from considering multi-

vehicle anticipation, the available driver assistance systems technology for HD traffic 

conditions can potentially benefit from including multi-vehicle anticipation-based prediction 

algorithms. In addition to HD traffic conditions, the proposed model can be applied in 

homogenous traffic conditions as well, since (a) multi-vehicle anticipation has been found in 

homogenous conditions too (Bexelius, 1968; Lenz et al., 1999; Hoogendoorn and Ossen, 2006; 

Treiber et al., 2006; Peng and Sun, 2010), (b) longitudinal movements dominate in these 

conditions, and (c) the modelling framework is generic and transferrable. Furthermore, using 

the proposed model to simulate human-driven vehicles in a mixed traffic of human-driven and 

autonomous vehicles will likely improve the realism of the simulated mixed traffic 

environment. Such a simulation environment can potentially offer a more robust investigation 

of autonomous vehicles’ trajectory planning algorithms.   
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Table 3.4 Estimation results of the independent model and joint model with Frank copula  

Explanatory variables 
Independent model Joint model with Frank copula 

MNL# Truncated regression*  MNL# Truncated regression*  
Acceleration  Deceleration Acceleration Deceleration Acceleration  Deceleration Acceleration Deceleration 

Constant 1.371 (7.88) -0.581 (-3.19) 0.362 (2.26) -2.395 (-12.59) 1.355 (7.88) -0.550 (-3.07) 0.681 (4.68) -0.798 (-5.50) 
Subject vehicle (SV) characteristics          

Speed in longitudinal direction (m/s) -0.038 (-2.67) 0.176 (13.45) -0.133 (-11.39) 0.185 (18.16) -0.034 (-2.46) 0.174 (13.52) -0.047 (-4.50) 0.108 (13.24) 
Stimuli from MF1 (first vehicle in MF)         

Space gap in longitudinal direction (m) 0.020 (4.93) -0.015 (-4.06) 0.027 (8.54) -0.012 (-4.46) 0.018 (4.52) -0.014 (-3.81) 0.015 (5.42) -0.003 (-1.13) 
Relative speed in longitudinal direction (m/s) 0.193 (11.62) -0.151 (-8.97) 0.191 (18.00) -0.122 (-13.66) 0.178 (10.79) -0.135 (-8.19) 0.097 (10.25) -0.020 (-2.36) 
Acceleration at t s (m/s2) 0.311 (7.80) -0.122 (-3.05) 0.233 (11.27) -0.146 (-7.66) 0.287 (7.31) -0.119 (-3.29) 0.107 (5.38) -- 

Type of lead vehicle (Other than motorcycle vehicle type is base)         

Motorcycle -- -- -- -- -- -- -- -- 
Interaction between the motorcycle vehicle type and explanatory variable         

Space gap in longitudinal direction (m) -0.016 (-6.32) -- -0.012 (-3.82) -- -0.015 (-6.22) -- -0.006 (-2.47) -- 
Relative speed in longitudinal direction (m/s) -0.065 (-2.96) 0.061 (2.75) -0.053 (-4.34) 0.050 (5.25) -0.054 (-2.49) 0.051 (2.34) -0.031 (-2.66) 0.017 (1.48) 

Stimuli from MF2 (second vehicle in MF)          

Subject vehicle has 2 or more lead vehicles (DM2) (One lead vehicle is base) -0.469 (-4.05) -- -0.261 (-2.02) 0.108 (2.67) -0.446 (-4.22) -- -0.045 (-1.09) -- 

DM2   Space gap in longitudinal direction (m) 0.017 (3.40) -- 0.006 (1.18) -- 0.015 (3.29) -- -- -- 

DM2   Relative speed in longitudinal direction (m/s) 0.108 (6.00) -0.025 (-1.45) 0.086 (8.13) -- 0.096 (5.40) -0.020 (-1.22) 0.048 (5.13) -- 
Stimuli from LF1 (first vehicle in LF)          

Subject vehicle has 1 or more lead vehicles (DL1) (No lead vehicle is base) -- 0.266 (3.75) -0.204 (-2.63) -- -- 0.260 (4.01) -0.100 (-1.53) -- 

DL1 Space gap in longitudinal direction (m) -- -0.009 (-3.44) 0.009 (3.01) -0.004 (-1.37) -- -0.010 (-4.27) 0.006 (2.47) -- 

DL1 Lateral gap between MF1 and LF1 (m) -- -0.062 (-4.44) 0.060 (3.83) -0.022 (-1.63) -- -0.060 (-4.71) 0.035 (2.66) -- 

DL1 Relative speed in longitudinal direction (m/s) 0.063 (8.51) -- 0.034 (4.89) -0.010 (-1.71) 0.058 (8.38) -- 0.011 (1.67) -- 
Stimuli from RF1 (first vehicle in RF)          

Subject vehicle has 1 or more lead vehicles (DR1) (No lead vehicle is base) -- 0.148 (2.39) -- 0.155 (2.91) -- 0.121 (2.05) -0.101 (-1.93) 0.127 (2.74) 

DR1   Space gap in longitudinal direction (m) -- -0.007 (-2.24) -- -- -- -0.006 (-2.27) -- -- 

DR1   Lateral gap between MF1 and RF1 (m) -- -- 0.022 (1.03) -- -- -- 0.036 (1.75) -- 

DR1   Relative speed in longitudinal direction (m/s) 0.037 (4.26) -- 0.030 (4.13) -0.030 (-4.10) 0.031 (3.65) -- 0.020 (2.83) -0.015 (-2.18) 
Stimuli from LS1 (first vehicle in LS)          

Subject vehicle has 1 or more side vehicle (DLS1) (No side vehicle is base) -0.092 (-1.60) -- -0.164 (-2.51) -- -0.078 (-1.42) -- -0.132 (-2.39) -- 

DLS1   Space gap in lateral direction (m) 0.046 (2.74) -- 0.045 (2.46) -- 0.037 (2.29) -- 0.030 (1.91) -- 

DLS1   Relative speed in longitudinal direction (m/s) -- -0.012 (-1.41) 0.033 (3.99) -- -- -0.012 (-1.58) 0.023 (3.11) -- 
Stimuli from RS1 (first vehicle in RS)          

Subject vehicle has 1 or more side vehicle (DRS1) (No side vehicle is base) -0.064 (-1.44) -- -- -- -0.063 (-1.54) -- -- -- 

DRS1   Space gap in lateral direction (m) -- -- -- -- -- -- -- -- 

DRS1   Relative speed in longitudinal direction (m/s) -- -- -- -0.032 (-3.30) -- -- -- -0.026 (-2.86) 
Road geometry characteristics          

Space gap between left edge of the SV and left edge of the road (m) -- -0.046 (-3.14) 0.062 (4.52) -0.035 (-2.57) -- -0.047 (-3.30) 0.021 (1.63) -0.021 (-1.73) 
Copula dependency parameter (θ) NA NA NA NA NA NA -4.232 (-12.68) -4.991 (-17.73) 
Scale parameter NA NA 0.927 (48.74) 0.921 (52.59) NA NA 0.927 (48.74) 0.921 (52.59) 

Goodness of fit measures         
Number of parameters 65 62 
Log likelihood -24131.08 -24033.43 
BIC value 48898.51 48673.84 
Adjusted rho-square 0.13 0.14 
Number of cases 17852 17852 
# Maintain same speed is base, *Dependent variable = absolute value of acceleration/deceleration at t s (m/s2), -- the corresponding parameter was dropped from the specification as it was found to be statistically insignificant, NA- Not applicable. 
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Table 3.5 Estimation results for different number of lead vehicles in the model. 

Goodness of fit 

measures of 

models 

considering 

influence of … 

Influence of 1 

lead vehicle in 

middle front 

compartment 

Influence of 1 lead 

vehicle in middle front 

compartment by 

considering type of lead 

vehicle and interaction 

with other stimuli from 

same vehicle  

Influence of 2 

vehicles in 

middle front 

compartment* 

Influence of 2 

vehicles in middle 

front and 1 in left 

front compartment* 

Influence of 2 

vehicles in middle 

front, 1 in left front, 

1 in right front 

compartment* 

Influence of 2 

vehicles in middle 

front, 1 in left front, 1 

in right front, 1 on left 

side compartment* 

Influence of 2 vehicles 

in middle front, 1 in left 

front, 1 in right front, 1 

on left side, 1 on right 

side compartment* 

Influence of 2 vehicles in 

middle front, 1 in left front, 

1 in right front, 1 on left 

side, 1 on right side 

compartment and road 

geometry characteristics* 

Model number Model 1 Model 2 Model 3 Model 4 Model 5 Model 6 Model 7 Model 8 
Log likelihood -24726.27 -24354.95 -24238.55 -24150.36 -24068.42 -24054.68 -24046.29 -24033.43 

Number of 

significant 

parameters 
20 29 35 43 51 57 59 62 

Number of 

restrictions 
-- 9 6 8 8 6 2 3 

LLR -- 742.64 232.79 176.38 163.88 27.49 16.78 25.71 
χ2 at 95 % 

confidence level 
-- 16.92 12.59 15.51 15.51 12.59 5.99 7.81 

Remark -- 
Model 1 is rejected 

compared to model 2 

Model 2 is 

rejected 

compared to 

model 3 

Model 3 is rejected 

compared to model 

4 

Model 4 is rejected 

compared to model 

5 

Model 5 is rejected 

compared to model 6 
Model 6 is rejected 

compared to model 7 
Model 7 is rejected 

compared to model 8 

Number of 

cases 
17852 

*Type of lead vehicle and interaction with other stimuli from same vehicle is also considered in the model specification 
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3.6 VALIDATION  

A validation exercise was performed on a hold-out dataset of 5,000 vehicle manoeuvres to 

assess the efficacy of the proposed model in predicting driver’s discrete and continuous 

decisions at an aggregate level. To do so, the following procedure was followed for simulating 

the driver’s discrete and continuous decisions for each of the 5,000 data points 

( 1, 2, ..., 5,000)q = . 

1. Simulate the discrete decisions: To simulate discrete decisions of acceleration, 

deceleration, or maintain same speed, we used the following two-step approach: 

(1a). Calculate the probability of each possible discrete choice decision ( , ,i a d s= ) 

using the following multinomial logit expression. 

 
( )
( )

exp
; , ,

exp

T

i qi

qi T

j qj

j

x
P i a d s

x




= =


 (3.22) 

(1b). Use the above calculated discrete choice probabilities to simulate the discrete 

decision of acceleration ( i a= ), deceleration ( i d= ), or maintain constant speed 

( ).i s=  This can be done by drawing a pseudo random number from a uniform [0,1] 

distribution and seeing where the draw falls in the cumulative probability space of the 

discrete choices ( , , ).i a d s=  

2. For a given simulated discrete decision of acceleration or deceleration ( ,i a d= ), 

simulate the corresponding continuous decision (acceleration and deceleration) values. 

To do so, compute the conditional expected value of the corresponding continuous 

decision (i.e., extent of acceleration or extent of deceleration) using the following 

expression:  

 ( ) ( )( )| | ; ,
i

i

U

qi qi qi qi

L

E f m i f m i m dm i a d  = =
    (3.23) 

where, ( )|qif m i  is the conditional density of the corresponding continuous decision 

(acceleration and deceleration) and takes the following expression from Eq. (3.15), and 

all other terms are defined in Section 3.3: 
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Since the predicted (i.e., simulated) discrete decisions depend on the random draw used for 

simulation of the probabilities in Eq. (3.22), the above procedure was repeated for 100 

simulated pseudo random draws for each of the 5,000 data points (i.e., a total of 500,000 

simulations). Next, the percentage of the times each of the discrete decisions ( , ,i a d s= ) was 

predicted from the above 500,000 simulations was computed. Subsequently, across all the 

simulations when acceleration was predicted, the average of the conditional expected value of 

acceleration was computed (i.e., average of the values computed using Eq. (3.23)). Similarly, 

across all the simulations when deceleration was predicted, average of the conditional expected 

value of deceleration was computed. These aggregated predictions are shown in Table 3.6, 

along with the corresponding aggregated observed values from the data. As can be seen from 

the table, the percentage of the times vehicles were observed to have accelerated, decelerated, 

or remained in constant speed is close to the percentage of the times vehicles were simulated 

to have taken those discrete choice decisions. Also, the aggregate predictions of the extents of 

acceleration and deceleration values are close to the corresponding observed values. 

Specifically, the observed average predicted acceleration (deceleration) value for the vehicles 

predicted to have accelerated (decelerated) is very close to that of vehicles that were observed 

to have accelerated (decelerated). These results suggest that the proposed model can predict 

aggregate patterns of the acceleration and deceleration decisions and the corresponding extents 

very well. 

Table 3.6 Observed and predicted aggregate acceleration and deceleration decisions in a 

hold-out sample (N = 5,000 data records) 

Discrete and continuous decisions Observed Predicted 

Percentage of instances vehicles accelerated (discrete choice) 41.9% 41.3% 

Average acceleration (average of conditional expected acceleration 

calculated using Eq. (3.23)) if the discrete decision is acceleration 
0.75 m/s2 0.74 m/s2 

Percentage of instances vehicles decelerated (discrete choice) 44.9% 46.5% 

Average deceleration (average of conditional expected deceleration 

calculated using Eq. (3.23)) if the discrete decision is deceleration 
0.71 m/s2 0.72 m/s2 

Percentage of instances vehicles maintained same speed  13.2% 12.3% 
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3.7 CONCLUSIONS AND FUTURE RECOMMENDATIONS 

This chapter proposes a multi-vehicle anticipation and copula-based discrete-continuous 

choice modelling framework for describing driver behaviour in HD traffic conditions. To 

incorporate the impact of multi-vehicle anticipation, we introduce the concept of influence zone 

around a subject vehicle and consider stimuli from all vehicles and other objects within the 

influence zone. Further, driving decisions are characterized as combination of discrete and 

continuous components. The discrete component involves the decision to accelerate, 

decelerate, or maintain a constant speed and the continuous component involves the decision 

of how much to accelerate or decelerate. The proposed copula-based joint modelling 

framework allows a flexible error dependency structure between driver’s discrete and 

continuous decisions. Additionally, truncated distributions are employed for the continuous 

model components to avoid the prediction of unrealistically high acceleration or deceleration 

values.   

The model estimation has been carried out using a vehicle trajectory dataset from 

Chennai, India. To capture the dependency structure between the driver’s manoeuvring 

decision and its extent, various copula functions including Gaussian, FGM, Frank, Gumbel, 

Clayton, Joe, and AMH have been employed in this chapter. Overall, the Frank copula model 

with truncated distributions that consider bounds for acceleration and deceleration values 

performed better than all other models estimated in this chapter.  

The empirical results of this chapter enhance the current understanding of driving 

behaviours in HD traffic conditions in several ways. First, the results demonstrate the 

importance of considering multi-vehicle anticipation for describing driving behaviour in HD 

traffic conditions. Specifically, the results lend credence to the idea of an influence zone around 

the vehicle and corroborate our hypothesis that driving behaviour is influenced by multiple 

vehicles within the influence zone of the subject vehicle. Further, drivers in HD traffic 

conditions not only consider vehicles that are ahead of their vehicle but also consider those 

vehicles that are on either side. At the same time, while the drivers’ decision to accelerate and 

the extent of acceleration is governed by multiple vehicles ahead, their decision on the extent 

of deceleration is likely to be affected more by the immediate lead vehicle than other vehicles 

in the influence zone. Such nuanced findings have not been reported by other studies that 

considered multi-vehicle anticipation in driving behaviour.  
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Second, most of the earlier studies in the literature model driver behaviour as a single 

continuum, where the discrete decisions (of whether to accelerate, decelerate, or remain in 

constant speed) and continuous decisions (how much to accelerate or decelerate) are not treated 

separately. However, this chapter demonstrates that driving behaviour is more complex. The 

results support the notion that discrete and continuous decisions are separate and the factors 

influencing the discrete decisions might be different or may influence the continuous decisions 

differently. Specifically, not all traffic environment variables found to influence the discrete 

decisions were found influential on continuous decisions (or how much to accelerate or 

decelerate) and vice versa. Moreover, the influence of several variables was found to be 

stronger on the decision to accelerate or decelerate than on the decision of how much to 

accelerate or decelerate. This suggests that the discrete and continuous decisions likely require 

different cognitive efforts by drivers and are influenced in different ways by the traffic 

environment variables. Such findings add to our understanding of driver decision making 

process and driving task performance.  

Third, the results indicate the presence of significant unobserved factors contributing 

to the negative dependency between the driver’s discrete and continuous decisions. This 

suggests that the unobserved factors that increase (decrease) the propensity to 

accelerate/decelerate are more likely to decrease (increase) the extent of 

acceleration/deceleration. When compared to the estimation results of an independent model 

that ignores such dependencies, the copula-based joint models offer a statistically superior 

goodness-of-fit and more plausible behavioural interpretations. This highlights the importance 

of jointly modelling the discrete and continuous decisions. In addition, employing truncated 

normal distributions to model acceleration and deceleration values not only led to a significant 

improvement in the model fit but also prevents the possibility of unrealistically high 

acceleration or deceleration values.  
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CHAPTER 4 A PANEL DATA-BASED DISCRETE-CONTINUOUS MODELLING 

FRAMEWORK TO ANALYSE LONGITUDINAL DRIVER BEHAVIOUR IN 

HOMOGENEOUS AND HETEROGENEOUS DISORDERLY TRAFFIC 

CONDITIONS 

Abstract 

In this chapter, we propose a panel data-based discrete-continuous modelling framework to 

analyse driver behaviour in two disparate trajectory datasets – one from a heterogeneous, 

disorderly (HD) traffic stream in India and another from a homogeneous traffic stream in the 

United States. The panel data-based framework allows the analyst to isolate the subject 

vehicle- and driver-specific unobserved factors that influence driver behaviour. Doing so helps 

reduce the confounding effects of such unobserved factors on analysing the influence of 

observed factors, such as relative speeds and spacing between the subject vehicle and other 

vehicles, on driver behaviour. This also helps reduce the confounding effects of unobserved 

factors on analysing the differences in driving behaviour between HD and homogeneous traffic 

streams. The empirical results reveal both similarities and differences in driver behaviour 

between the two trajectory datasets examined in this chapter. Specifically, in both datasets, in 

addition to vehicles ahead of the subject vehicle in its lane, vehicles ahead in the adjacent lanes 

were found to influence driver behaviour. However, side vehicles were found to influence 

drivers’ decision-making only in the HD traffic dataset. We also examined the suitability of 

different lengths of influence zones on drivers’ longitudinal movement behaviour in both traffic 

datasets. In this context, a 60 m length influence zone was found more suitable than shorter 

length zones to model driver behaviour in the HD traffic trajectory dataset from India. In 

contrast, a 30 m length influence zone was found more suitable for the homogeneous traffic 

stream trajectory dataset in the United States. Such insights can help improve driver behaviour 

models and traffic simulation frameworks for both traffic conditions. 

Note: The material in this chapter is drawn from the following paper: 

Nirmale, S. K., Pinjari, A. R., and Sharma, A. (2022). A panel data-based discrete-continuous 

modelling framework to analyse longitudinal driver behaviour in homogeneous and 

heterogeneous disordered traffic conditions. Transportation Letters. 

https://doi.org/10.1080/19427867.2022.2132058 

https://doi.org/10.1080/19427867.2022.2132058
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4.1 INTRODUCTION  

In general, traffic flow conditions on uninterrupted traffic facilities across the world can be 

divided into two broad categories, namely, homogeneous traffic flow conditions and 

heterogeneous, disorderly (HD) traffic flow conditions. Homogeneous traffic flow is typically 

observed in countries such as Australia, the USA, Germany, and the Netherlands, whereas HD 

traffic flow is typically observed in Asian countries such as India, Bangladesh, and Indonesia. 

The characteristics of HD traffic flow tend to be significantly different from those of 

homogeneous traffic flow. Specifically, HD traffic streams comprise a wide variety of vehicle 

classes (such as passenger cars, motorcycles, buses, trucks, three-wheeled auto-rickshaws, and 

non-motorised vehicles) with considerably different physical and operational characteristics. 

Most of these classes have substantial representation in the traffic streams. In contrast, 

homogeneous traffic streams are dominated mostly by passenger cars having similar physical 

and operational characteristics. Moreover, contrary to homogeneous traffic, vehicles in HD 

traffic exhibit weak to no lane discipline, a greater extent of lateral movements, staggered 

following, and squeezing in gaps between vehicles (Asaithambi et al., 2016). Despite the 

substantial differences in traffic conditions, most of the previous studies have investigated 

driver behaviour either only in HD traffic conditions (Chakroborty et al., 2004; Dey et al., 

2008; Venkatachalam and Gnanavelu, 2009; Mallikarjuna and Rao, 2011; Mathew et al., 2013; 

Choudhury and Islam, 2016; Das and Maurya, 2018a; Kanagaraj and Treiber, 2018; Raju et 

al., 2018; Das et al., 2019; Sarkar et al., 2020; Amrutsamanvar et al., 2021; Raju et al., 2021) 

or in homogeneous traffic conditions (Gazis et al., 1961; Gipps, 1981; Bando et al., 1995; 

Ahmed, 1999; Treiber et al., 2000; Koutsopoulos and Farah, 2012). Limited efforts have been 

made to model driver behavior in both homogeneous and HD traffic streams using a same 

modelling framework. 

To model the longitudinal movements of a subject vehicle, most available models 

consider stimulus from either a single lead vehicle only (Herman et al., 1959; Gazis et al., 1961; 

Bando et al., 1995; Treiber et al., 2000) or multiple vehicles within the same lane (Bexelius, 

1968; Lenz et al., 1999; Hoogendoorn et al., 2006; Zhang, 2014). This is because such models 

are developed for homogeneous traffic conditions, where the driver’s focus is typically on the 

vehicles ahead in the same lane unless the driver intends to change lanes. In HD traffic, 

however, due to a lack of lane discipline and a wide variety of vehicle classes, the subject 

vehicle might be behind more than one vehicle or in between multiple leaders. Therefore, as 

discussed in previous studies (Jin  et al., 2010; Li et al., 2015; Choudhury and Islam, 2016; Li 
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et al., 2016; Budhkar and Maurya, 2017), models that consider a single lead vehicle cannot 

truly represent the driver behaviour in HD traffic conditions. Further, models that consider 

stimuli from multiple vehicles in the same lane of the subject vehicle are also not suitable since 

Chapter 3 has demonstrated that side vehicles and vehicles present in the left front or right front 

locations with respect to a subject vehicle influence its driver’s longitudinal movements in HD 

traffic conditions. Therefore, a model that considers the influence of vehicles that are not only 

straight ahead but also on the sides of the subject vehicle will be suitable to mimic longitudinal 

movements in HD traffic conditions. Intuitively, such a model can potentially be applied for 

modelling longitudinal movements in homogeneous traffic conditions as well since these 

conditions represent a special case of HD traffic conditions.  

Another important point to note is that, in both traffic conditions, most existing models 

do not consider the influence of driver-specific unobserved factors such as age, gender, and 

aggressiveness on driver behaviour. Similarly, vehicle-specific factors such as the engine’s 

kinematic capabilities might cause variations in acceleration and deceleration behaviours 

across different vehicles. These factors remain mostly unobserved because the vehicle 

trajectory data used for building, calibrating, and validating driver behaviour models typically 

come from videos or GPS devices that do not measure such information. However, it is evident 

from previous studies that driver-specific human factors affect driver behaviour. For example, 

increased driver response time was observed for older drivers (Edwards et al., 2003), and 

aggressive drivers were observed to opt for shorter time gaps (Sharma et al., 2020). Hence, 

accounting for the impact of unobserved, driver-specific factors can increase the realism of 

driver behaviour models. Besides, such unobserved heterogeneity, when present but ignored, 

can potentially confound the other parameter estimates of driver behaviour models. This can 

potentially lead to biased estimation and distorted inferences of the influence of typically 

examined observed factors such as relative speeds and space gaps on driver behaviour. 

In this chapter, we propose a panel data-based discrete-continuous modelling 

framework to analyse driver behaviour in two disparate trajectory datasets – one from a 

heterogeneous, disorderly (HD) traffic stream in India and another from a homogeneous traffic 

stream in the United States. The panel data-based model in this chapter builds on a multi-

vehicle anticipation (MVA) based discrete-continuous choice model proposed in Chapter 3 that 

characterizes longitudinal movements of the subject vehicle as a combination of discrete choice 

(whether to accelerate, decelerate, or maintain constant speed) and continuous choice (how 

much to accelerate or decelerate). The panel data-based framework allows the analyst to isolate 
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the subject vehicle- and driver-specific unobserved factors (such as age and aggressiveness) 

that do not vary across different observations of a same vehicle but have an influence on the 

vehicle’s driver behaviour. Doing so helps reduce the confounding effects of such unobserved 

factors on analysing the influence of observed factors (such as relative speeds and spacing 

between the subject vehicle and other vehicles) on driver behaviour. This also helps in reducing 

the confounding effects of unobserved factors on analysing the differences in driving behaviour 

between HD and homogeneous traffic streams. Furthermore, in Chapter 3, we did not consider 

the issue of serial correlations that may arise due to correlation across successive observations 

from the trajectory of a vehicle. Such serial correlations, if present (but are ignored by the 

analyst) can also confound the parameter estimates and inferences made from the empirical 

models. This chapter employs a simple empirical strategy to remove serial correlation (more 

on this in Section 4.2.1.2). 

Given that homogeneous traffic streams observed in the US and HD traffic streams 

typically observed in India are distinctively different, it would be interesting and insightful to 

compare and contrast the driver behaviour in trajectory datasets from these two types of traffic 

streams. Literature is devoid of studies investigating and comparing driver behaviour in HD 

traffic and homogeneous traffic streams. To the best of the authors’ knowledge, only one study 

compared driver behaviour in homogeneous and HD traffic conditions (Ravishankar and 

Mathew, 2011). However, the modified Gipps’s model employed in this study lacked the 

aforementioned features specific to HD traffic conditions, such as MVA, and the consideration 

of vehicle- and driver-specific unobserved factors. Hence, we compare the influence of various 

factors on car driver behaviour in two trajectory datasets – one from India and one from the 

US. Knowledge of similarities and differences in driver between the two datasets will be useful 

in building behaviourally realistic and robust driver behaviour models. In addition, 

understanding the differences in driver behaviour between the two types of traffic streams 

might be useful in avoiding any pitfalls in understanding and simulating HD traffic flow using 

models developed for homogeneous traffic conditions.  

It is worth noting here that a comparative analysis of driving behaviour between the 

two different types of traffic streams involves trajectory data from disparate locations. When 

driving behaviour patterns are compared between such disparate datasets, the differences in 

behaviour may be attributed to not only the differences between HD and homogeneous traffic 

streams but also several other possible reasons. The other reasons include, for example, 

differences in the driver population (demographics and driving culture), vehicle characteristics, 
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and other factors such as left-side vs. right-side driving, geometric features of roadways, 

congestion levels, season and weather conditions, and time-of-day of data collection. Since 

many of these factors, such as driver population characteristics, are typically unobserved in 

trajectory datasets, it is useful to control for such unobserved effects in analyses involving a 

comparison of driving behaviour between datasets from disparate locations. The panel data 

models proposed in the chapter help control for the confounding effects of unobserved factors 

(e.g., subject vehicle- and driver-specific factors) that vary across different vehicles in each of 

the two datasets. However, the models do not help control for factors that are different between 

the two datasets but are not different across the vehicles within each dataset. These include, for 

example, congestion levels and traffic composition in the two traffic streams, roadway 

geometry, and type of facilities. To control for the effects of such factors when comparing 

driving behaviour between HD and homogeneous traffic conditions, it is important to analyse 

a greater variety of trajectory datasets from a larger number of locations representing variation 

in such factors in both HD traffic and homogeneous traffic conditions. Despite this limitation, 

we believe it is helpful to start documenting the differences observed in trajectory datasets from 

different geographies. More such studies in the future with additional datasets can help build a 

repository of findings that might lend themselves to a larger meta-study. 

In the rest of this chapter, Section 4.2 discusses the modelling framework and elucidates 

how it is different from that in Chapter 3. Section 4.3 provides an overview of the trajectory 

datasets and model variables. Section 4.4 presents and discusses the model estimation results. 

Section 4.5 summarises the main findings of this chpater. 

4.2 METHODOLOGY 

4.2.1 Methodological Issues Considered 

4.2.1.1 Influence zone and MVA 

Following Chapter 3, we considered a rectangular shaped ‘influence zone’ around each subject 

vehicle (SV), as shown in Figure 4.14. The vehicles within this zone are considered to influence 

the SV’s driver behaviour, as opposed to a single lead vehicle. For HD traffic conditions, since 

data come from a three-lane arterial, road boundaries on either side are approximated as the 

edges of a rectangular-shaped influence zone. For homogeneous traffic conditions, since data 

come from a six-lane highway, the sum of the width of immediate lanes on the left and right 

sides of the subject vehicle and the width of the current lane of the vehicle (i.e., a width of three 

 
4 Note that this figure from Chapter 3 is repeated here for the reader’s convenience. 
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lanes) is considered as the width of the influence zone. For both traffic conditions, the 

rectangular influence zone is divided into the following five compartments: middle front (MF), 

left front (LF), right front (RF), right side (RS), and left side (LS) (refer to Figure 4.1). The 

labelling of surrounding vehicles in each of these compartments – MF1, MF2, LF1, RF1, LS1, 

and RS1 – is done as depicted in the legend of Figure 4.1.  

We have also considered the impact of the third vehicle in the middle front 

compartment (MF3), the second vehicle in the left front compartment (LF2), the second vehicle 

in the left side compartment (LS2), and the second vehicle in right side compartment (RS2). 

Our initial estimation results indicated that these vehicles did not influence the driver’s 

microscopic behaviour, and hence, these vehicles were not considered in subsequent analysis. 

Next, we need to determine a suitable length of the influence zone for each of the two 

traffic streams. Literature suggests that vehicles in 30 m to 60 m range of an SV are likely to 

influence its driver behaviour (Herman and Potts, 1959; Subramanian, 1996; Panwai and Dia, 

2007; Punzo et al., 2011; Kanagaraj et al., 2015; Sharma, Zheng, et al., 2018; Sarkar et al., 

2020). In Chapter 3, we considered an influence zone length of 30 m in their empirical analysis 

of driver behaviour in HD traffic streams. However, not much guidance exists on what length 

of the influence zone is suitable for each of HD and homogeneous traffic conditions. In this 

context, the differences in the characteristics of the two traffic streams may lead to a difference 

in the lengths of influence zones considered by their respective drivers. Therefore, to better 

understand the differences in driver behaviour, it is worth investigating the appropriate size of 

the influence zones in the two traffic streams. To this end, in this chapter, we relax the 

assumption of a fixed-length influence zone and investigate three different lengths of influence 

zones – 30 m, 45 m, and 60 m – for both traffic streams.  

Note here that, regardless of the length, the influence zone gets trimmed accordingly 

when the subject vehicle is at the extreme left or right edge of the road. For instance, the 

influence zone has only three compartments – MF, RF, and RS – when the SV is at the extreme 

left edge of the road. Further, the back edge of the influence zone follows the SV’s back bumper 

(see Figure 4.1).  

In this chapter, an SV’s driver behaviour at any time instance is characterised as a 

combination of discrete and continuous choices. The discrete choice comprises the 

manoeuvring decision of whether to accelerate, decelerate, or maintain a constant speed. If the 

driver decides to accelerate (decelerate), the continuous choice involves the extent of 
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acceleration (deceleration). This is because not all the factors influencing the discrete choices 

might influence the continuous choices or vice versa, and the cognitive efforts needed to make 

the decision of whether to accelerate or decelerate might be different from that of how much 

accelerate or decelerate. At the same time, drivers make both the discrete and continuous 

choices jointly, and several common unobserved factors specific to drivers, vehicles, and the 

traffic environment might influence both discrete and continuous decisions. Therefore, it is 

useful to model these decisions jointly while recognising the correlations (or dependencies) 

between the discrete and continuous choice modelling components. While these conjectures 

have been corroborated in the context of HD traffic conditions in Chapter 3, the current chapter 

examines the conjectures for homogeneous traffic conditions also.  

 

Figure 4.1 Structure of a rectangular influence zone around a subject vehicle 

4.2.1.2 Serial correlation  

Methodological considerations new in this chapter (not considered in Chapter 3) are two-fold: 

(a) serial correlation among successive observations (time series) of the same SV, and (b) SV- 

and driver-specific unobserved factors that influence driver behaviour and persist across all 

observations of a given SV (thereby necessitating the use of panel data models).  

Serial correlation due to the similarity of the traffic environment between temporally 

proximate observations is unavoidable in time series data such as vehicle trajectory data. If 

such serial correlation exists and is ignored, the standard errors of the parameter estimates tend 

to be underestimated. As a result, the tendency to reject the null hypothesis for estimated 
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parameters – when it should not be rejected – increases. To address the serial correlation issue 

in each of the HD and homogeneous traffic conditions datasets, we estimated linear regression 

models on the observed accelerations in the trajectory data (treating the values of acceleration, 

deceleration, or near-zero accelerations for vehicles in constant speed as arising from a single 

normal distribution) and calculated the residuals using these regression models. We used these 

residuals to conduct the widely used Durbin-Watson test for serial correlation. The Durbin-

Watson test statistic ( )DW  for a given trajectory dataset is calculated using the following 

expression (Durbin and Watson, 1950): 
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where, 
qne  is the residual from the regression equation for the 

thqn data point in a time series 

of trajectory data for a subject vehicle q ; 
qN  is the number of data points in the time series 

for the subject vehicle q ; and Q  is the number of vehicles. The hypotheses generally 

considered in the Durbin-Watson test are as follows – null hypothesis 0( )H : zero serial 

correlation in the residuals, alternative hypothesis ( )AH : residuals have a serial correlation. 

The upper critical values ( )udw  and lower critical values ( )ldw  used to conduct the test are 

available from standard statistics books (Gujarati et al., 2012; Wooldridge, 2012) for different 

values of significance level and the number of explanatory variables (degrees of freedom) in 

the regression model. The possible outcomes from the Durbin-Watson test are the following: 

do not reject 0H  if  uDW dw  (i.e., serial correlation is insignificant); reject 0H  if 

lDW dw  (i.e., serial correlation is significant); and inconclusive test if l udw DW dw  .  

When we applied the Durbin-Watson test for the trajectory data that retained 

observations of all time steps of each subject vehicle, we found that lDW dw  at 95 % 

confidence level in both HD and homogeneous datasets, indicating that the residuals of data 

from one time step were correlated to those form the subsequent time steps (i.e., the observed 

acceleration data demonstrated serial correlation). Therefore, we selected the data points from 

the time series of each vehicle, removing the consecutive data points in the time series until the 

residuals were found to be not correlated according to the Durbin-Watson test. In both HD and 
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homogeneous datasets, we found that serial correlation was not significant when we selected 

data points that were at least 2.5 s apart from each other for each subject vehicle.5 Since the 

model parameters are estimated using individual data points in the trajectory (as opposed to 

complete trajectories), this simple approach obviates the need for sophisticated methods to deal 

with serial correlation. 

4.2.1.3 Panel effects 

Even after removing serial correlation, SV- and its driver-specific unobserved factors (such as 

vehicle engine performance and driver characteristics) that influence the SV’s microscopic 

movements might persist over time and cause correlation across the different observations of 

an SV. Such unobserved factors necessitate the use of panel data modelling approaches, as 

opposed to the cross-sectional data models used in most other driver behaviour studies that 

employ statistical models on vehicle trajectory data. It is worth noting that such panel data 

effects due to SV- and driver-specific unobserved factors might persist even after accounting 

for dependencies between the discrete and continuous choice components due to common 

unobserved factors that vary across the different observations of an SV. The current chapter 

accommodates dependencies due to unobserved effects at both levels – (a) dependencies 

between discrete and continuous choice components at the level of each observation (at a given 

time instance) of an SV and (b) panel effects due to unobserved factors at the level of the SV. 

A copula-based method is used for the former, and random effects are specified for the latter, 

as discussed below.  

4.2.2 Joint Discrete-Continuous Modelling Framework: Formulation and Estimation  

Let q  denote a subject vehicle (SV) and let i  denote its driver’s manoeuvring choice 

alternatives ( a =  accelerate, d =decelerate, s =maintain constant speed) at a time instance t . 

Using these notational preliminaries, consider the following set of equations used to model the 

discrete and continuous choices of drivers: 

 *     ; , ,T

qit i qit qi qi qitu x i a d s   = + + + =  (4.2) 

 .     ; ,qit i qi

T

qi it tq qi i a dm z   + == + . (4.3) 

 
5 When all datapoints in the trajectories were considered, the DW statistic values for the HD and homogeneous 

datasets were 1.335 and 0.502, respectively, which were smaller than the corresponding lower critical value 

(1.957). When we selected data points that were at least 2.5 s apart from each other for each subject vehicle, the 

DW statistic values for the HD and homogeneous datasets were 2.0010 and 2.140, respectively, which were 

greater than the corresponding upper critical value (1.966). 
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In Eq. (4.2) above, *

qitu  is the utility that the driver of the 
thq  vehicle perceives from choosing 

a manoeuvring decision i  at time t ; 
qitx  is a column vector of observed traffic environment 

variables that influence the utility for discrete decision i  and  i  is the corresponding 

coefficient vector. Eq. (4.3) represents regression equations for 
qitm , the extent of acceleration 

or deceleration conditional on whether the driver decides to accelerate ( i a= ) or decelerate (

i d= ). 
qitm  is mapped to observed traffic environment variables ( )qitz  influencing the extent 

of acceleration or deceleration through the coefficient vector i .  

The remaining terms in Eq. (4.2) and Eq. (4.3) are random error components. Among 

these, 
qi , 

qi , and 
qi  are normally distributed error components with mean zero and 

variances 2

i , 2

i , and 2

i , respectively. These three error components represent the SV- 

and driver-specific unobserved factors that do not vary across the different observations of an 

SV and influence the decisions of the driver. The 
qi  terms ( ,i a d= ) capture such SV- and 

driver-specific factors that influence both the discrete and continuous decisions, the 
qi  terms 

( , , )i a d s=  capture the factors that influence the discrete choice decisions only, and  
qi  

( , )i a d=  capture the factors that influence the continuous choices only. Note that the 
qi  terms 

which enter Eq. (4.2) also enter Eq. (4.3). The same 
qi  terms enter the two sets of equations 

because these capture the SV- and driver-specific unobserved factors that influence both the 

discrete and continuous decisions (i.e., these factors are common to both the discrete and 

continuous choice equations). For example, driver aggressiveness, age, gender, etc., may be 

such unobserved factors that influence both discrete and continuous choices and cause a 

correlation between the corresponding equations. These 
qi  terms enter with a ‘ ’ sign in Eq. 

(4.3) because the underlying correlation between the discrete and continuous components due 

to unobserved factors  
qi  may be +ve or –ve. The specific sign can be decided empirically. 

A ‘+ ’ sign implies that the unobserved factors that increase (decrease) the propensity for 

taking a discrete decision i  also increase (decrease) the extent of that decision. On the other 

hand, a ‘ − ’ sign implies that the unobserved factors 
qi  that increase (decrease) the propensity 

for taking a discrete decision i  also decrease (increase) the extent of that decision. Finally, 
qit  

( , , )i a d s=  and 
qit  ( , )i a d=  represent unobserved factors assumed to be independent and 
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identically distributed across the manoeuvring choice alternatives and across SVs. The 
qit  

terms are assumed to be standard Gumbel distributed and the 
qit terms are assumed to be 

normal distributed with mean zero and variance 2

i . 

Recall that the qi  terms appear in both Equations (4.2) and (4.3) to generate 

dependencies between the discrete and continuous choice components of a driver, due to 

unobserved factors that do not vary across observations of an SV. In addition to these SV- or 

driver-specific effects, qit  and qit  could be correlated because of correlations between time-

varying factors influencing the discrete and continuous choices. To capture such dependencies 

between qit  and qit , we employed copulas as in Chapter 3. For more details on Copula 

functions, refer to Bhat and Eluru (2009).6 

 We assume that a driver of the subject vehicle q  chooses a manoeuvring decision i  

that offers the maximum utility among all manoeuvring decisions ( , ,j a d s= ), as expressed 

below: 

 

 

* *

, , ,

*

, , ,

*

, , ,

  max

  max

  max

qit qjt
j a d s j i

T

i qit qi qi qit qjt
j a d s j i

T

qit qjt i qit qi qi
j a d s j i

T

qit i qit qi qi

u u

x u

u x

v x

   

   

  

= 

= 

= 



+ + + 

−  − − −

 − − −

 (4.4) 

  *

, , ,
where, maxqit qit qjt

j a d s j i
v u

= 
= −   

Eq. (4.3) represents a multinomial discrete choice model. Conditional on the error components 

qi  and 
qi , since the 

qit  terms are assumed as IID Gumbel distributed, it results in a 

multinomial logit (MNL) conditional likelihood expression for the discrete choice component.  

 
6 As an alternative to couplas, we explored introducing time varying common error components in Eq. (4.2) and 

Eq. (4.3) to generate dependencies between discrete and continuous model components. Such an approach leads 

to likelihood functions that involve computationally intensive bi-level integrals (see Bhat and Castelar, 2002) due 

to the presence of error components at two different levels – (1) one set of error components at the observation 

level to represent unobserved factors that vary across time instances and (2) another set of error components at 

the SV level to represent unobserved factors that do not vary across time instances. However, we found that using 

the copula functions to capture correlations at the observation level and common random error coponents to 

capture SV-level effects resulted in a model that was much less computationally intensive (because one level of 

simulation-based integration is obviated by the use of copulas) and yielded better goodness of fit to data. 
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 To estimate the model parameters, let ic  be the parameter vector that stacks the i  and 

i  vectors. The individual model components described earlier are brought together, and the 

joint likelihood expression of all observations of an SV q  over different time instances 

1,2,...,t T=  conditional on 
qi , 

qi , and 
qi  is provided below:   

 ( )
( )( )

( )( )1 1

 
 

| ,  
|

,

qit

I

q

t i
q

T
T qit i qit qi

i

qi

i qi qi qi
T

qit i qit qi qit

P
L i j

P m

v x
c

v x



  
  

  = =

  
  

=    
  

+



 −

+ +


+

 −
    (4.5) 

where,   1 qit =  if the driver of the 
thq  vehicle chooses an alternative i  at time t , otherwise 

0.qit =  I represents the total number of discrete choice alternatives. Given the assumptions 

made earlier in the discussion, Eq. (4.5) can be expressed as below:  

( )
( ) ( )1 2

1 1 2

,1
  1  | , ,

qi
i iI

qit i qit qt qt

q i i
t i i i

TT
qi qi

i qi qi qi
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m z C u u
L

u
c





 
















= =

    −     = −



          

+
   (4.6) 

In the above expression, C  is a copula function, ( ).i  is the standard normal probability 

density function. 
1

i

qtu  is expressed as below (since the discrete choice component, conditional 

on 
qi  and 

qi , takes a multinomial logit form):    
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1
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T
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  (4.7) 

and 
2

i

qu  is expressed as below:   

 
( )

2 ,

T

qt iqi i qiti

q

i

qi

t

m z
u







 −
 = 

 

+

 
  (4.8) 

where, ( ).  is a standard normal cumulative density function. Integrating the conditional 

likelihood ( )| , ,i qi qi qiqL c     over the distributions of 
qi , 

qi  and 
qi  results in the 

following unconditional likelihood for a driver of the vehicle q :  
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( ) ( ) ( ) ( ) ( )2 2 2 2 2 2

, ,
, , , | , , ; ; ;

qi qi qi
i i i i i qi qi qi i i iq q q i qi i i i iL c c d d dL     

  
                 = 

 (4.9) 

Note that the vector ic , 2

i , 2

i , and 2

i  are the population-level parameters to be estimated. 

The multivariate integral in the likelihood function of Eq. (4.9) may be simulated to result in 

the following simulated likelihood function as an estimator of ( )2 2 2, , ,i i i iq cL      : 
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
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where, r

qi , r

qi , and r

qi  are the 
thr draws from the distribution of  

qi , 
qi , and 

qi , 

respectively, and R  is the total number of draws covering the distributions. Note that r

qi  is 

not visible in Eq. (4.10), but it enters through the 
1

i

qtu  terms. The simulated log-likelihood 

expression for a sample of Q  subject vehicles ( ) 1,2, ,q Q=   may be written as: 

 ( ) ( )( )2 2

1

2 ,ln, , , , ,i i i i i qi qi

q

qi

Q

qS cLL SLc        
=

=  (4.11) 

The above simulated log-likelihood function is maximised to estimate the model parameters 

( )2 2 2, , ,i i i ic      . In this chapter, we used R = 500 Halton draws (Bhat, 2003) to simulate the 

distributions of  { , , }qi qi qi    for computing ( )2 2 2, , ,i i i iSL cL      .  

4.3 DATASETS AND VARIABLES CONSIDERED IN THE MODEL 

4.3.1 Empirical Datasets  

The proposed discrete-continuous modelling framework was applied to two different datasets 

– one from a homogeneous traffic stream and another from an HD traffic stream. For 

homogeneous traffic trajectory data, we used the reconstructed NGSIM I80-1 dataset (Punzo 

et al., 2011; Montanino and Punzo, 2013; Montanino and Punzo, 2015). This NGSIM data were 

collected on eastbound I80 in the San Francisco Bay area in Emeryville, California. The study 

area was approximately 500 m in length and consisted of six freeway lanes. For HD traffic 

conditions, we used a vehicular trajectory dataset from an urban arterial stretch of 245 m in 

Chennai, India, originally processed by Kanagaraj et al. (2015). Both trajectory datasets include 
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time series of vehicle positions (longitudinal and lateral), speeds, and acceleration/deceleration 

values. The time resolution in NGSIM and Chennai datasets is 0.1 s and 0.5 s, respectively.  

To analyse a driver’s decisions at a time instance t , we considered a variety of traffic 

environment variables at t − s as independent variables representing the potential stimuli 

where   is the update time. To determine  , exploratory linear regression models of the 

observed acceleration values as a function of traffic environment variables were estimated 

considering different update time values ranging from 0.1 s to 2.0 s. This chapter adopts the 

update time of 0.7 s and 0.5 s for homogeneous traffic conditions and HD traffic conditions, 

respectively, since these resulted in the best model fit and the most intuitive interpretation of 

the parameter estimates for the exploratory regression models. 

4.3.2 Descriptive Statistics 

For each of the two traffic conditions, we considered the same observations of the subject 

vehicles across different datasets created using 30 m, 45 m, and 60 m of influence zone lengths 

ahead of the subject vehicle. As a result, data on the dependent variables do not differ across 

these three datasets, but the explanatory variables do. This allows us to statistically compare 

the model estimated on these datasets. Table 4.1 provides key descriptive statistics of the 

processed trajectory datasets. The first set of descriptives corresponds to the percentages of 

instances vehicles have been observed to be in acceleration, deceleration, and constant speed 

states. Note that most trajectory datasets do not show a probability mass of exactly zero 

acceleration (to identify the percentage of constant speed instances). Therefore, following 

Chapter 3, we considered vehicles to be in a constant speed state if their acceleration value was 

in the range [-0.1 m/s2, +0.1 m/s2]. We also considered Ozaki’s (1993) definition that a vehicle 

would be in a constant speed state when its acceleration is within [-0.05g, +0.05g], where g = 

9.8 m/s2. However, exploratory empirical models using both datasets offered much better 

intuitive interpretations with the former definition. Therefore, the former definition was 

retained for all subsequent analyses. 

According to the above-discussed definition, the percentages of acceleration, 

deceleration, and constant speed state in the NGSIM dataset are 39.0 %, 37.6 %, and 23.4 %, 

respectively. The corresponding percentages in the Chennai dataset are 41.1 %, 46.3 %, and 

12.6 %. Clearly, the percentage of the times vehicles were observed to be in a constant speed 

state is higher in homogeneous traffic conditions. This is perhaps because of orderly traffic due 

to lane discipline, lower rates of lateral movements, and greater space availability due to six 
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freeway lanes in the homogeneous traffic situation (as opposed to relatively less orderly traffic 

on an urban arterial of only three lanes in the HD traffic situation). The average acceleration 

values (when vehicles accelerated) and deceleration values (when vehicles decelerated) are 

also higher in the homogeneous traffic dataset than those in the heterogeneous dataset. The 

standard deviations of observed acceleration and deceleration values, however, are smaller in 

the homogeneous traffic dataset. As can be observed from the table, in most instances, the 

subject vehicle in HD traffic conditions has at least one vehicle in the left front compartment, 

possibly because cars in India tend to travel on the right side of the road. Also, note that the 

average longitudinal speed of the subject vehicle, longitudinal space gap, and longitudinal 

speed difference with respect to MF1 vehicle is higher in the homogeneous traffic conditions 

than in HD traffic conditions. All these differences will likely have a bearing on the model 

estimation results. 

Note that the mean space gaps with respect to LF1 are higher in HD traffic streams than 

those in homogeneous traffic streams, whereas mean space gaps with respect to RF1 are lower 

in HD traffic streams than in homogeneous traffic steams. This could be because of the 

differences in traffic rules followed in India and USA. In India, fast-moving vehicles travel on 

the right side of the road, whereas in the USA, they travel on the left side. As a result, traffic 

volumes in the right lanes are likely to be greater than traffic volumes in the left lanes in the 

Indian context (assuming that the speeds are not near the free-flow regime). Therefore, in the 

Indian context, the space gap of a subject vehicle with respect to a vehicle in the RF1 position 

is likely to be smaller than that in LF1. 

Furthermore, generally, lateral gaps between vehicles are expected to be smaller for 

HD traffic streams than for homogenous traffic streams. This trend can be observed in the 

reported descriptive statistics. However, the mean lateral gap between MF1 and LF1 and that 

between MF1 and RF1 in HD traffic is only slightly smaller than the mean lateral gap in 

homogenous traffic stream (when a car is a subject vehicle). This may be due to the low traffic 

volume and low density observed in the Chennai trajectory dataset, i.e., only 6010 vehicles/hr 

and 370 vehicles/km for a three-lane urban arterial road. As the volume and density are low, 

higher lateral gaps among vehicles may be observed than what may be expected in more 

congested HD traffic streams.  
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4.4 MODEL ESTIMATION RESULTS AND DISCUSSION 

The following statistical specifications were explored in this chapter on both traffic conditions: 

(a) independent discrete and continuous choice models without any dependencies, (b) joint 

discrete-continuous choice models with different types of copulas – Frank, Gaussian, FGM, 

Gumbel, Clayton, Joe, and AMH – to capture dependencies at the observation level, without 

considering panel effects or dependencies due to driver-level unobserved factors, (c) joint 

discrete-continuous choice models with copulas to capture observation-level dependencies and 

random error components to consider panel effects and dependencies due to driver-level 

unobserved factors. In addition, three different lengths of influence zones – 30 m, 45 m, and 

60 m – were also considered for both datasets. The best fit models were decided by comparing 

goodness of fit measures such as AIC, BIC, and adjusted rho-squared values. In addition, the 

log-likelihood ratio test was employed whenever suitable.  

Among all the models examined, the model with a Frank copula specification, driver-

level unobserved effects, and 30 m length of the influence zone provided the best fit to the 

homogeneous traffic dataset. Whereas the model with a Frank copula specification, driver-level 

unobserved effects, and 60 m length of the influence zone provided the best fit to the HD traffic 

dataset. Note that while estimating the models, we considered explanatory variables (such as 

space gaps, relative speeds, and lateral gaps) corresponding to all vehicles present in a subject 

vehicle’s influence zone. We found that models that considered explanatory variables with 

respect to two vehicles in the middle front compartment (MF1 and MF2), one in each of the 

left front and right front compartments (LF1 and RF1), and one on either side of the subject 

vehicle (LS1 and RS1) resulted in the most behaviourally consistent parameter estimates (refer 

to Figure 4.1 for the meanings of vehicle labels such as LF1 and RF1). Table 4.2 provides the 

parameter estimates of the final empirical specifications (from the standpoint of data fit and 

behavioural consistency) for both traffic conditions – considering a 30 m influence zone for 

the homogeneous traffic dataset and a 60 m influence zone for the HD traffic dataset. Table 

B.1 and Table B.2 in Appendix C provide parameter estimates corresponding to the other 

influence zones for both traffic streams. In addition, we compared the panel data-based 

discrete-continuous model developed in this chapter with the model developed in Chapter 3 

using goodness of fit measures such as AIC, BIC, and adjusted rho-squared values. Table B.3 

in Appendix B reports the goodness of fit measures for both the models. An examination of 

this table demonstrates that the panel data-based discrete-continuous model performs better 

than the model developed in Chapter 3. 
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Table 4.1 Descriptive statistics of explanatory variables corresponding to different lengths of influence zones for both homogeneous and HD traffic datasets*. 

Variables 

Homogeneous traffic conditions Heterogeneous disorderly traffic conditions 

Length of the influence zone ahead of the subject vehicle Length of the influence zone ahead of the subject vehicle 

30 m 45 m 60 m 30 m 45 m 60 m 

Discrete variables Percentage Percentage Percentage Percentage Percentage Percentage 

Dependent variable at t s       

Acceleration decision  39.0 39.0 39.0 41.1 41.1 41.1 

Deceleration decision 37.6 37.6 37.6 46.3 46.3 46.3 

Maintain same speed decision  23.4 23.4 23.4 12.6 12.6 12.6 

Vehicles in different compartments of the influence zone        

Subject vehicle has one or more vehicles in the MF compartment  100 100 100 100 100 100 

Subject vehicle has two or more vehicles in the MF compartment  40.0 75.1 86.8 38.0 65.8 77.9 

Subject vehicle has one or more vehicles in the LF compartment  78.0 83.8 86.0 88.2 92.7 94.3 

Subject vehicle has one or more vehicles in the RF compartment  73.7 79.2 81.0 49.0 54.7 57.2 

Subject vehicle has one or more vehicles in the LS compartment  38.5 38.5 38.5 47.3 47.3 47.3 

Subject vehicle has one or more vehicles in the RS compartment  38.0 38.0 38.0 22.2 22.2 22.2 

Continuous variables Mean (Std. dev.) Mean (Std. dev.) Mean (Std. dev.) Mean (Std. dev.) Mean (Std. dev.) Mean (Std. dev.) 

Dependent variable at t s       

Acceleration (m/s2) 0.81 (0.63) 0.81 (0.63) 0.81 (0.63) 0.13 (0.99) 0.13 (0.99) 0.13 (0.99) 

Deceleration (m/s2) -0.87 (0.74) -0.87 (0.74) -0.87 (0.74) -0.17 (0.95) -0.17 (0.95) -0.17 (0.95) 

Subject vehicle (SV) characteristics at t − s       

Speed in longitudinal direction (m/s) 7.82 (2.91) 7.82 (2.91) 7.82 (2.91) 6.07 (1.28) 6.07 (1.28) 6.07 (1.28) 

Stimuli from MF1 (first vehicle in MF) at t − s       

Space gap in longitudinal direction (m) 13.63 (6.40) 13.63 (6.40) 13.63 (6.40) 13.87 (7.30) 13.87 (7.30) 13.87 (7.30) 

Relative speed in longitudinal direction (m/s) 0.01 (1.38) 0.01 (1.38) 0.01 (1.38) 0.01 (1.42) 0.01 (1.42) 0.01 (1.42) 

Stimuli from MF2 (second vehicle in MF) at t − s       

Space gap in longitudinal direction (m) 22.83 (4.81) 29.26 (8.21) 32.15 (10.70) 20.89 (6.03) 27.57 (9.47) 31.26 (12.35) 

Relative speed in longitudinal direction (m/s) 0.09 (1.70) 0.09 (1.82) 0.10 (1.89) 0.07 (1.49) 0.02 (1.50) 0.01 (1.52) 

Stimuli from LF1 (first vehicle in LF) at t − s       

Space gap in longitudinal direction (m) 10.68 (7.39) 12.46 (9.73) 13.46 (11.43) 8.61 (6.89) 9.92 (8.97) 10.64 (10.41) 

Lateral gap between MF1 and LF1 (m) 2.03 (1.13) 2.02 (1.11) 2.02 (1.11) 2.21 (1.36) 2.20 (1.36) 2.19 (1.36) 

Relative speed in longitudinal direction (m/s) 1.72 (4.50) 1.98 (4.72) 2.14 (4.86) -0.47 (1.58) -0.47 (1.59) -0.47 (1.59) 

Stimuli from RF1 (first vehicle in RF) at t − s       

Space gap in longitudinal direction (m) 10.39 (7.27) 12.19 (9.69) 13.06 (11.21) 10.89 (8.12) 13.52 (10.99) 15.23 (13.37) 

Lateral gap between MF1 and RF1 (m) 1.50 (1.28) 1.63 (1.25) 1.68 (1.23) 1.67 (1.37) 1.80 (1.37) 1.87 (1.37) 

Relative speed in longitudinal direction (m/s) -0.13 (3.40) -0.04 (3.41) -0.01 (3.42) 0.30 (1.65) 0.28 (1.68) 0.25 (1.70) 

Stimuli from LS1 (first vehicle in LS) at t − s       

Space gap in lateral direction (m) 2.02 (0.96) 2.02 (0.96) 2.02 (0.96) 2.17 (1.17) 2.17 (1.17) 2.17 (1.17) 

Relative speed in longitudinal direction (m/s) 0.99 (3.96) 0.99 (3.96) 0.99 (3.96) -0.48 (1.70) -0.48 (1.71) -0.48 (1.70) 

Stimuli from RS1 (first vehicle in RS) at t − s       

Space gap in lateral direction (m) 2.00 (0.99) 2.00 (0.99) 2.00 (0.99) 1.64 (0.94) 1.64 (0.94) 1.64 (0.94) 

Relative speed in longitudinal direction (m/s) -0.33 (3.37) -0.33 (3.37) -0.33 (3.37) 0.24 (1.63) 0.24 (1.63) 0.24 (1.63) 

Road geometry characteristics at t − s       

Space gap between left edge of SV and left edge of the road (m) 11.02 (6.06) 11.02 (6.06) 11.02 (6.06) 6.30 (1.89) 6.30 (1.89) 6.30 (1.89) 

Number of vehicles  522 760 

Number of observations 8728 6914 

*Mean and standard deviation of variables with respect to surrounding vehicles are calculated when vehicles are present in the respective compartment. 
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4.4.1 Similarities in Statistical Specifications 

For the dependencies between discrete and continuous choice decisions at the observation 

level, the copula parameter estimates had a negative sign in both datasets. This result suggests 

that the time-varying unobserved factors that increase (decrease) a driver’s tendency to 

accelerate or decelerate also decrease (increase) driver’s tendency to accelerate more or 

decelerate more. Although the same finding was reported and explained in Chapter 3 for HD 

traffic dataset, this chapter reveals negative dependencies in the homogeneous traffic dataset 

as well.  

 For the dependency due to unobserved factors at the driver level, we explored both 

positive and negative correlations and found that the model with positive correlations yielded 

a much better fit in both datasets. This implies that the driver-level unobserved factors that 

increase (decrease) a driver’s propensity to accelerate also increase (decrease) the extent of 

acceleration by the driver. For instance, careful drivers are less likely to accelerate frequently, 

and they also accelerate less (i.e., do not accelerate more) when they accelerate. 

The scale parameter estimates of the random error components 
qi  that capture panel 

effects due to driver-specific unobserved factors on discrete decisions separately are 

statistically significant in both datasets. However, the scale parameter estimates of the 
qi  

terms that capture panel effects on continuous decisions (extent of acceleration or deceleration) 

separately are not significant in either dataset. This suggests that most of the driver-specific 

unobserved factors influencing the continuous decisions (extent of acceleration or deceleration) 

are already captured in the random error components (
qi ) common to discrete and continuous 

decisions. 

It is worth noting here that independent discrete and continuous choice models, which 

ignored the above-discussed dependencies and panel effects, resulted in inflated t-statistics and 

overestimated the influence of different traffic environment variables in both datasets. The 

consistency of these results between two different datasets from disparate traffic conditions 

suggests that statistical specification is an important issue in the context of parameter 

estimation (aka, calibration) of driver behaviour models. Since most vehicle trajectory datasets 

pose a panel data setting, the analyst cannot ignore the role of unobserved factors at either the 

observation level or the driver level.    
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4.4.2 Similarities in Driver Behaviour 

The empirical models on both datasets support the stimulus-response theory used in most driver 

behaviour models in those stimuli such as relative speeds and spacing with respect to lead 

vehicles ahead (in the same lane) of the SV influence its driver’s decisions. Specifically, the 

number of statistically significant parameters and the corresponding t-statistics indicate that for 

both models, the first lead vehicle (MF1) ahead of SV has the strongest influence on SV’s 

driver behaviour, followed by the second lead vehicle (MF2) in the same lane except the 

acceleration decision case in HD traffic condition. Another interesting similarity is that vehicles 

in lanes adjacent to that of the SV – at least those in the LF and RF compartments – influence 

driver behaviour in both traffic conditions. This finding challenges a tacit assumption made by 

previous studies that SVs respond to stimuli from leaders in the same lane only. Further, in 

both datasets, not all factors that influence the discrete decisions influence the continuous 

decisions and vice versa. This finding supports the conjecture that the factors considered and 

cognitive efforts involved in deciding whether to accelerate, decelerate, or maintain constant 

speed are not necessarily the same as those in deciding how much to accelerate or decelerate. 

4.4.3 Differences in Driver Behaviour 

4.4.3.1 Differences in the size of the influence zone 

As mentioned earlier, influence zones of lengths 30 m and 60 m provided the best fit for 

homogeneous and HD traffic datasets, respectively. This can be observed in all metrics used 

for the evaluation of model fit, including AIC, BIC, and adjusted Rho-square values. These 

results imply that a single length of influence zone is not suitable to describe driver behaviour 

in both homogeneous and HD traffic streams. In this context, one can make the following 

observations by comparing the parameter estimates of the models for homogeneous traffic 

stream datasets across the three influence zones (Table 4.2 and Table C.1 from Appendix B). 

First, the influence of the traffic environment variables with respect to MF2 and LF1 and that 

of the lateral gap between MF1 and LF1 became less influential as the length of the influence 

zone increased from 30 m to 60 m. This can be observed from the decreasing size of t-statistic 

values of the corresponding variables as the influence zone increased from 30 m to 60 m. 

Second, the influence of some variables was not even marginally significant in the later models. 

For example, the influence of the space gap with respect to LF1 was not significant even at a 

70 % confidence level in models with 45 m and 60 m influence zones. 
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Interestingly, the reverse trend may be observed from similar comparisons of the 

models estimated on HD traffic stream datasets (Table 4.2 and Table C.2 from Appendix B). 

That is, the t-statistic values of some of the variables with respect to MF2, LF1, and RF1 

increased as the influence zone size increased from 30 m to 60 m. For example, the influence 

of space gap variables with respect to MF2 and RF1 increased with an increase in the length of 

the influence zone from 30 m to 60 m. Further, some variables (e.g., space gap with respect to 

MF2 in the equation for the extent of acceleration) that were found to have an insignificant 

effect in the model with a 30 m influence zone showed a significant effect in the models with 

45 m and 60 m influence zones. That is, drivers in an HD traffic stream consider stimuli from 

the second lead vehicle (MF2) even if it is as far as 60 m in their decision-making. On the 

contrary, as discussed earlier, drivers in a homogeneous traffic stream consider stimuli from 

the second lead vehicle if it is closer to their vehicle. 

The above differences between homogeneous and HD traffic streams may be attributed 

to differences in driver behaviour due to differences in the characteristics of the two traffic 

streams. First, in HD traffic streams, vehicles show a greater extent of lateral movements and 

can cut in anytime in front of the subject vehicle. Moreover, drivers of influencing vehicles 

while competing for gaps in the lateral direction might undergo a cycle of deceleration and 

acceleration. Thus, subject vehicle drivers in HD traffic streams anticipate such behaviour of 

lead vehicles and consider it in their decision-making even if the lead vehicles are far. Second, 

drivers in HD traffic conditions do not maintain lane discipline (one can observe vehicles in 

between lanes, subject vehicles in between multiple leaders – a type of staggered car-

following), and the traffic stream itself comprises a higher percentage of motorcycles and three-

wheelers which are relatively smaller in size as compared to passenger cars. As a result, the 

number of lead vehicles within the driver’s field of view is higher, and the distance up to which 

a driver can see (and consider) is larger in HD traffic streams; thus, allowing the driver to 

perceive stimuli from lead vehicles that are as far as 60 m. On the other hand, drivers in 

homogeneous conditions either cannot see or may not consider vehicles that are far ahead 

because drivers adhere to lane discipline (with another vehicle straight ahead), and the traffic 

stream is dominated by passenger cars along with a small percentage of large vehicles such as 

trucks. 
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Table 4.2 Estimation results of the joint models on both homogeneous and HD traffic datasets 

Explanatory variables 

Model on homogeneous traffic conditions (influence zone length = 30 m) Model on heterogeneous traffic conditions (influence zone length = 60 m) 

Discrete choice# Continuous choice*  Discrete choice# Continuous choice*  

Accn Dccn Accn Dccn Accn Dccn Accn Dccn 

Constant -0.015 (-0.10) -0.228 (-1.54) 0.883 (16.55) 0.998 (13.50) 1.992 (5.27) -0.946 (-2.45) 1.121 (11.94) -0.067 (-0.69) 

Subject vehicle's speed in longitudinal direction (m/s) 0.019 (1.26) 0.080 (6.18) -- 0.021 (4.29) -0.144 (-4.36) 0.210 (7.39) -0.025 (-2.86) 0.078 (12.11) 

Space gap in longitudinal direction w.r.t. MF1 (m) 0.017 (2.76) -0.017 (-2.89) 0.006 (2.94) -0.003 (-1.24) 0.021 (2.97) -0.017 (-2.52) 0.003 (1.60) -0.004 (-2.62) 
Relative speed in longitudinal direction w.r.t. MF1 (m/s) 0.415 (14.51) -0.381 (-13.67) 0.068 (5.85) -0.060 (-4.85) 0.077 (4.08) -0.081 (-4.12) 0.025 (5.19) -0.004 (-0.86) 

Subject vehicle has 2 or more lead vehicles in MF compartment** -0.204 (-3.12) -- -- 0.466 (4.34) -- 0.332 (3.84) -- -- 
Space gap in longitudinal direction w.r.t. MF2 (m) -- -- -- -0.021 (-5.04) 0.012 (5.15) -- 0.002 (2.63) -- 

Relative speed in longitudinal direction w.r.t. MF2 (m/s) 0.153 (4.35) -0.263 (-6.86) 0.024 (1.96) -0.093 (-7.97) 0.082 (6.21) -- 0.014 (2.82) -- 

Subject vehicle has 1 or more lead vehicles in LF compartment*** -- -- -- -- -- 0.258 (1.72) -- -- 
Space gap in longitudinal direction w.r.t. LF1 (m) -- -- 0.002 (1.14) -- -- -0.008 (-2.57) 0.002 (1.71) -- 

Lateral gap between MF1 and LF1 (m) 0.027 (1.28) -- -- -0.012 (-1.36) 0.106 (4.58) -- 0.009 (1.08) -- 

Relative speed in longitudinal direction w.r.t. LF1 (m/s) -- -0.011 (-1.56) -- -- 0.054 (3.05) -0.017 (-1.00) -- -- 
Subject vehicle has 1 or more lead vehicles in RF compartment*** -- -- -- -- -- 0.109 (0.98) -0.083 (-2.62) 0.096 (3.84) 

Space gap in longitudinal direction w.r.t. RF1 (m) -- -- -- -- -- -0.007 (-2.36) 0.005 (4.27) -- 

Lateral gap between MF1 and RF1 (m) -- -- -- -- -- -- -- -- 
Relative speed in longitudinal direction w.r.t. RF1 (m/s) 0.014 (1.24) -- -- -- -- -0.048 (-4.10) 0.019 (4.22) -- 

Subject vehicle has 1 or more side vehicle in LS compartment*** -- -- -- -- -- -- -- -- 

Space gap in lateral direction w.r.t. LS1 (m) -- -- -- -- 0.055 (2.71) -- -- -- 
Relative speed in longitudinal direction w.r.t. LS1 (m/s) -- -- -- -- -- -0.034 (-2.81) -- -- 

Subject vehicle has 1 or more side vehicle in RS compartment*** -- -- -- -- -0.283 (-2.26) -- -- -- 

Space gap in lateral direction w.r.t. RS1 (m) -- -- -- -- 0.063 (0.97) -- -- -- 
Relative speed in longitudinal direction w.r.t. RS1 (m/s) -- -- -- -- 0.048 (2.49) -- -- -0.019 (-3.23) 

Space gap between left edge of the SV and left edge of the road (m) -- 0.013 (2.25) -- 0.002 (1.07) -- -0.108 (-3.95) -- -- 

Scale parameter of regression equations ( )i    
0.625 (45.24) 0.725 (55.10) 

  
0.603 (49.81) 0.577 (57.03) 

Scale parameters for panel effects (  and )i i            

Acceleration 0.212 (3.15) -- 0.568 (8.43) -- 

Deceleration 0.181 (2.71) -- 0.357 (3.90) -- 

Maintain same speed 0.113 (0.94) NA -- NA 

Scale parameters of SV- or driver-level common error terms ( )i          

Acceleration  0.067 (2.87) 0.144 (7.56) 
Deceleration -- 0.191 (12.62) 

Copula dependency parameters ( )i    

Acceleration -2.896 (-6.61) -5.257 (-11.05) 

Deceleration -4.240 (-11.00) -5.145 (-12.32) 

Goodness of fit measures                 

Number of parameters 37 50 

Log likelihood -14554.46 -10768.14 

AIC value 29182.93 21636.28 
BIC value 29444.68 21978.35 

LLR value w.r.t. to independent model 453.51 878.08 

Critical chi-square value at 95% CI 11.07 9.49 
Adjusted rho-square 0.105 0.143 

Number of vehicles 522 760 

Number of cases 8728 6914 

Notes: Accn = Acceleration, Dccn = Deceleration, # Maintain same speed is base category, *Dependent variable = absolute value of acceleration/deceleration at t s (m/s2), ** One lead vehicle is base, 

*** No vehicle is base, -- the corresponding parameter was dropped from the specification as it was statistically insignificant, NA= Not applicable 
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4.4.3.2 Differences in the number of vehicles influencing the subject vehicle 

Another important difference is that the number of vehicles influencing the driver behaviour is 

greater in HD traffic conditions than in homogeneous traffic conditions. Specifically, all six 

surrounding vehicles have some or the other influence on driver decisions in HD traffic 

conditions. However, only four out of six vehicles – MF1, MF2, LF1, and RF1 – show an 

influence on driver behaviour in homogeneous conditions. Notably, the vehicles on the side – 

LS1 and RS1 – show an influence on driver behaviour in HD traffic conditions only. This may 

be because, contrary to homogeneous traffic conditions, drivers continuously look for gaps in 

the lateral direction to gain more speed. Another reason is that side vehicles in HD traffic 

conditions tend to accelerate and cut in front of the subject vehicle. Clearly, drivers in HD 

traffic conditions have to consider multiple sources of stimuli, including those from the sides. 

Such lateral interactions are less likely in homogeneous traffic conditions unless lane-changing 

is under consideration. 

4.4.3.3 Other differences  

In HD traffic conditions, the SV’s longitudinal speed shows a significant influence on the 

decisions to accelerate or decelerate as well as the extent of acceleration and deceleration. The 

parameter signs indicate that SVs moving at higher speeds are more (less) likely to decelerate 

(accelerate) and exhibit a higher (lower) magnitude of deceleration (acceleration). In contrast, 

in homogeneous traffic conditions, this variable appears with a positive sign, albeit with a small 

t-statistic, in the acceleration utility function. This finding seems counterintuitive. However, 

interestingly, previous studies have also reported similar findings with the SV’s speed variable 

in homogeneous traffic conditions (Ahmed, 1999; Toledo, 2003). This may be because the 

acceleration capabilities of vehicles are higher at high speeds observed in homogeneous traffic 

streams (Toledo, 2003). Another difference between the two traffic conditions is that the SV 

speed variable does not have a statistically significant influence on the extent of acceleration 

in homogeneous traffic conditions (whereas this variable significantly influences the extent of 

acceleration in HD traffic conditions). Recall that the influence of subject vehicle speed on the 

discrete choice utility function for acceleration decision is not statistically significant in the 

homogeneous traffic dataset. It is likely that this variable does not have an influence on the 

extent of acceleration as well (in the homogeneous traffic dataset). It may be that, after 

accounting for relative speed and headway spacing with respect to the first lead vehicle, the 

subject vehicle’s speed does not have a significant influence on the extent of acceleration in 

the homogeneous traffic dataset. It may also be because we are allowing for the influence of 
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different factors to be different on the discrete and continuous choices. Previous studies that 

used trajectory datasets from homogeneous traffic conditions also report similar findings of the 

weak influence of subject vehicle speed on its decision to accelerate and/or the extent of 

acceleration. For example, Ahmed (1999) and Toledo (2003) found that the SV speed did not 

have a significant influence on the extent of deceleration in homogeneous traffic streams on 

Interstate 93 in downtown Boston and on southbound I-395 in Arlington VA, respectively. The 

specific reasons behind such findings are not directly apparent and should be explored in future 

research. 

Similarly, after accounting for the aforementioned dependencies and panel effects, the 

influence of the space gap variable (with respect to MF1) on the extent of deceleration became 

weak in homogeneous traffic streams. Such a weakening of the influence of the space gap 

variable in the extent of acceleration was observed in HD traffic stream data also, but the final 

parameter estimates are still statistically significant in the HD traffic conditions. The impact of 

relative speed with respect to MF1 is also weakened in the extent of deceleration in HD traffic 

streams after accounting for the dependencies and panel effects.  

Note that the gap between the subject vehicle and the left edge of the road is also found 

to significantly influence driving decisions. A larger gap between the vehicle and the left edge 

of the road makes car drivers more likely to decelerate (and decelerate more) in homogeneous 

traffic streams. On the contrary, a larger gap makes car drivers tend to decelerate less in HD 

traffic conditions. This is intuitively aligned with our expectations because it is anticipated that 

vehicles closer to the left edge drive slowly in India compared to those that are away from the 

left edge, whereas in the USA, vehicles closer to the right edge drive slowly.  

4.5 CONCLUSIONS  

In this chapter, we propose a panel data-based discrete-continuous modelling framework to 

analyse driver behaviour in two disparate trajectory datasets – one from a heterogeneous, 

disorderly (HD) traffic stream in India and another from a homogeneous traffic stream in the 

United States. The panel data-based framework allows the analyst to isolate the subject vehicle- 

and driver-specific unobserved factors (such as age and aggressiveness) that do not vary across 

different observations of a same vehicle but have an influence on the vehicle’s driver 

behaviour. Doing so helps reduce the confounding effects of such unobserved factors on 

analysing the influence of observed factors (such as relative speeds and spacing between the 

subject vehicle and other vehicles) on driver behaviour. This also helps in reducing the 
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confounding effects of unobserved factors on analysing the differences in driving behaviour 

between HD and homogeneous traffic streams. Furthermore, this chapter employs a simple 

empirical strategy to remove serial correlation that may arise due to correlation across 

successive observations from the trajectory of a vehicle. 

The estimation results reveal that it is necessary to incorporate the influence of vehicle- 

and driver-specific unobserved factors while analysing driver behaviour in order to improve 

the realism of the driver behaviour model. The results revealed interesting similarities and 

important differences in driver behaviour between homogeneous and heterogeneous traffic 

conditions trajectory data. From the standpoint of statistical model specification, both 

homogeneous and heterogeneous datasets revealed that the model that considered the role of 

unobserved factors at the driver level (i.e., panel data specification) and at the observation level, 

including dependencies between the discrete and continuous choice equations, provided the 

best fit. Ignoring such unobserved effects resulted in inflated t-statistics of several parameter 

estimates and inferior model fit. Since most trajectory datasets pose a panel data setting and 

dependencies between the discrete and continuous choices of drivers, the choice of the 

statistical specification becomes an important consideration for estimating the model 

parameters. 

In the context of behavioural similarities, in addition to lead vehicles in the same lane 

as that of the subject vehicle, vehicles in the lanes adjacent to the subject vehicle (i.e., vehicles 

in the left front and the right front zones) were also found to influence driver behaviour in both 

traffic conditions. However, as expected, the influence of the first lead vehicle in the middle 

front zone (MF1) was found to be the strongest in both traffic conditions, followed by the 

second lead vehicle (MF2) in the same lane. Further, in both datasets, not all factors that 

influenced the discrete decisions influenced the continuous decisions and vice versa.  

From the standpoint of differences in driver behaviour, the results revealed that side 

vehicles influence driver decision-making in HD traffic conditions but not in homogeneous 

traffic conditions. Moreover, we found that influence zones of lengths 60 m and 30 m provided 

the best fit for HD and homogeneous traffic datasets, respectively, indicating that drivers in 

HD traffic streams consider stimuli from lead vehicles even if they are as far as 60 m, whereas 

drivers in homogeneous traffic streams consider stimuli from lead vehicles if they are closer to 

their vehicle.  
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The insights from this chapter can assist in developing behaviourally realistic driver 

behaviour models specific to homogeneous and HD traffic conditions. Specifically, models 

developed for homogeneous traffic conditions might benefit from considering the influence of 

not only the first lead vehicle but also that of the second lead vehicle in the same lane and that 

of vehicles in the left front and right front zones within a 30 m influence zone. On the other 

hand, models for HD traffic in urban settings might benefit from considering the influence of 

side vehicles (left side and ride side) and that of lead vehicles as far as 60 m ahead of the subject 

vehicles. Such considerations and the modelling framework presented in this chapter can 

potentially help in better simulating traffic flow in the two traffic conditions. 
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CHAPTER 5 DISCRETE CHOICE MODELS WITH MULTIPLICATIVE 

STOCHASTICITY IN CHOICE ENVIRONMENT VARIABLES: APPLICATION 

TO ACCOMMODATING PERCEPTION ERRORS IN DRIVER BEHAVIOUR 

MODELS 

Abstract 

This chapter presents a mixed multinomial logit-based discrete choice modelling framework to 

accommodate decision-makers’ errors in perceiving choice environment variables that do not 

vary across choice alternatives. An analysis is undertaken to evaluate two different ways of 

specifying errors in the choice environment variables in discrete choice models – (a) the 

additive specification and (b) the multiplicative specification. Between these two approaches, 

the multiplicative error specification is consistent with psychophysical theories of human 

perception of physical quantities in that the variability in perception tends to be greater for 

quantities of greater magnitude. Further, it is shown that models with an additive error 

specification run into parameter (un)identifiability problems if the analyst attempts to 

accommodate errors in several variables. In contrast, models with multiplicative errors in 

variables allow separate identification of stochasticity in as many variables as needed, as long 

as those variables have a significant influence on the choice outcome. The usefulness of the 

proposed framework with multiplicative errors is demonstrated through simulation 

experiments as well as an empirical application for analysing driver behaviour while 

considering drivers’ errors in perceiving traffic environment variables. The empirical analysis 

is carried out using space-time trajectories of vehicles from a heterogeneous, disorderly (HD) 

traffic stream in Chennai, India. Results suggest that the proposed model, with power 

lognormal distributed multiplicative errors in traffic environment variables, outperformed the 

typically used mixed logit models with random coefficients (uncorrelated and correlated) or 

error components. Further, allowing for perception errors in traffic environment variables was 

found to be more important than allowing unobserved heterogeneity in the drivers’ sensitivity 

to those variables. In addition, the empirical model offers interesting insights on the extent of 

variability due to perception errors in different traffic environment variables. 

Note: The material in this chapter is drawn from the following paper: 

Nirmale, S. K., and Pinjari, A. R. (2022). Discrete choice models with multiplicative 

stochasticity in choice environment variables: application to accommodating perception errors 

in driver behaviour models. (In review with Transportation Research Part B: Methodological).
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5.1 INTRODUCTION  

Random utility maximization (RUM) based discrete choice models involve utility functions 

that are typically specified as functions of observed variables describing choice alternative 

attributes, decision-maker characteristics, and choice environment variables. In addition, the 

utility functions include random error terms to recognize differences between the systematic 

utility components characterized by the analyst and the utility perceived by the decision-maker. 

As discussed in Manski (1977), the random error terms include, for example, omitted attributes 

that have an influence on the decision-maker’s utility, unobserved taste variations, 

measurement errors in the variables included in systematic utility components, and other errors 

in the utility specification. In addition, even if the analyst had access to accurate measurements, 

the random error terms would include perception errors of the decision-makers.  

 Some of the above reasons for including random error terms, such as taste variations, 

may be addressed by treating the parameters of the systematic utility function as random. A 

large stream of literature exists on random coefficients in choice models (Cardell and Dunbar, 

1980; McFadden and Train, 2000). However, several other reasons for stochasticity in utility 

functions, such as measurement and/or perception errors for variables included in the 

systematic utility functions, warrant the treatment of those variables as stochastic. For example, 

using aggregate, zone-to-zone measurements instead of point-to-point measurements (Train, 

1978; Daly and Ortuzar, 1990) or assuming free-flow travel times can introduce errors in the 

travel time variables used to explain many travel choices. Spatial aggregation can introduce 

errors in spatial variables used in location choice models (Daly and Ortuzar, 1990; Hellerstein, 

2005). In some situations, noisy data might be a reason for errors in variables (Steimetz and 

Brownstone, 2005; Walker et al., 2010; Bhatta and Larsen, 2011). In another example, in 

models of driver behaviour in traffic streams, traffic environment variables such as space gaps 

and relative speeds are typically treated as deterministic. However, drivers’ perceptions of 

these variables might be different from the analysts’ measurements typically included as 

explanatory variables in the models. All these reasons warrant the need to accommodate 

uncertainty in the explanatory variables used in models of choice behaviour. 

5.1.1 Choice Models with Errors in Variables (EIV) 

The literature on choice models with errors in variables (EIV) is relatively small compared to 

that on choice models with random parameters. As pointed out by McFadden (1984) and 

recently brought to attention by Díaz et al. (2015) the EIV issue poses important yet not fully 
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resolved problems for choice modelling. This issue has received greater attention in the 

econometric literature; particularly in the form of EIV in linear regression models (Fuller, 

2009; Greene, 2018) and to some extent in non-linear models (Wansbeek and Meijer, 2000; 

Carroll et al., 2006). As such, there is a consensus in the econometric literature on non-linear 

models that EIV can potentially result in biased parameter estimates (due to endogeneity) not 

only for the variables with errors but also for other variables in the model (Greene, 2018). This 

is because the endogeneity caused by EIV typically affects the estimation of all parameters in 

non-linear models (Wooldridge, 2012). The issue of endogeneity arises when the EIV are 

correlated with one or more explanatory variables in the model. However, in RUM-based 

discrete choice models, even if the EIV are not correlated with the explanatory variables, 

ignoring EIV would lead to inflation of variance of the kernel error terms, thereby causing bias 

toward zero for the parameter estimates (because parameter estimates in discrete choice models 

are confounded by the scale of the kernel error terms). Several studies in the choice modelling 

literature discuss and/or demonstrate that ignoring stochasticity due to EIV, when present, can 

potentially lead to biased estimation and distorted inferences (Yatchew and Griliches, 1985; 

Hellerstein, 2005; Carroll et al., 2006; Bhatta and Larsen, 2011; Díaz et al., 2015), incorrect 

marginal rates of substitution (Ortúzar and Ivelic, 1987; Bhatta and Larsen, 2011), and 

erroneous forecasts (Train, 1978, 2009). 

To address the EIV problem in choice models, a stream of studies in the biometrics 

field (for example, Carroll et al., 1984; Stefanski and Carroll, 1985) propose bias-adjusted 

estimators for binary choice models and a few studies in the economics field (Kao and Schnell, 

1987) do the same for multinomial logit models. In another study, Steimetz and Brownstone 

(2005) use an imputation method (Rubin, 1987) to correct for measurement errors in network 

data such as travel times when accurate measurements are available for only for a sub-sample 

of observations.   

 In another widely used approach to address the EIV problem, the variables under 

consideration are treated as latent. Available measurements of the variables are used to inform 

the distribution of the latent variables through a measurement equation. The latent variable, in 

turn, enters the utility function of the choice model. The measurement equation and the choice 

model are estimated jointly in an integrated choice and latent variable (ICLV) framework 

(Bolduc and Alvarez-Daziano, 2010; Walker et al., 2010; Sanko et al., 2014; Varotto et al., 

2017; Biswas et al., 2019). In most such ICLV studies, separate structural equations are 

specified for the latent variables under consideration, where the latent variables are expressed 
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as functions of exogeneous variables. For example, income may be specified as a function of 

sociodemographic characteristics (Sanko et al., 2014), and route-level travel time may be 

specified as a function of route structure attributes. Doing so, however, is not always possible, 

especially when it is not easy to find exogenous variables to explain the latent variable. In such 

situations, the latent variable is expressed as a sum of available measurement and a random 

error term to recognize the error in the measurement. This approach is used to account for EIV 

in a multinomial choice model by Hellerstein (2005) and Díaz et al. (2015). In both the papers, 

the authors deal with errors in alternative attributes – location-specific attributes in a location 

choice model by Hellerstein (2005) and travel time variables in a mode choice model by Díaz 

et al. (2015). Furthermore, in both the papers, the EIV specification is converted into an error 

components specification where the EIV in all variables of interest are combined into one error 

component for each choice alternative. The resulting model, assuming IID Gumbel kernel error 

terms, is the familiar mixed multinomial logit model with a heteroscedastic structure. A 

downside of this approach is that one cannot separately estimate error components for each 

explanatory variable with errors, because for each choice alternative only a single variance 

term can be estimated (while normalizing the variance for one alternative). Besides, it is 

difficult to estimate separate error component parameters for each choice alternative in 

situations with large choice sets.  

5.1.2 Gaps in Literature 

There are three prominent gaps in most of the above-discussed literature on choice models with 

EIV. First, most of the above-discussed studies focus on errors in choice alternative attributes 

that vary across alternatives, such as travel times in mode choice or route choice models. Few 

studies focus on errors in choice environment variables that do not vary across choice 

alternatives. However, several choice environment variables that do not vary across choice 

alternatives, such as drivers’ perceptions of their traffic environment in driver behaviour 

models, can potentially be associated with errors. And there is one important difference 

between the errors in these two types of variables. Errors in choice environment variables that 

do not vary across alternatives must be represented by the same probabilistic distribution across 

all choice alternatives. This is because the decision-makers’ errors in perceiving a choice 

environment variable do not vary across choice alternatives. On the other hand, the 

distributions for errors in alternative-specific attributes are typically different for different 

choice alternatives. For example, variability in travel times of bus transit can potentially be 
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higher than that of metro transit. Therefore, the specification of errors in choice environment 

variables cannot be the same as that for alternative-specific attributes.  

Second, most of the above-discussed literature is in the context of accommodating 

measurement errors. However, in several situations, the decision-maker’s errors in perceptions 

of physical quantities – such as time duration, distance, and speed – might be more prevalent 

than the analyst’s errors in measuring the true values of those quantities. In such cases it 

becomes important to recognize the errors in decision-maker’s perception of the variables 

under consideration.7     

To be sure, there is a stream of literature that accounts for decision-maker’s perception 

errors in choice models. For example, the stochastic user equilibrium model of route choice 

(Daganzo and Sheffi, 1977) is based on stochasticity in utility functions due to perception errors 

in route-level travel times. Further, route choice applications of discrete choice models with 

multiplicative random utility terms (Fosgerau and Bierlaire, 2009) also motivate perception 

errors as a reason for multiplicative error terms. Another study on value of time estimation by 

Hess et al. (2017) motivates the use of multiplicative errors for the utility function to capture 

context effects, such as a greater variability for longer trips. To the authors’ knowledge, most 

of these studies focus on perception errors in alternative attributes or context effects on the 

overall utility function, not on specific choice environment variables that do not vary across 

 
7 One might suggest that that the decision-maker’s perception errors can be treated as the analyst’s errors in 

measuring the decision-maker’s perceptions. However, it is useful to treat decision-makers’ errors in perceiving 

physical quantities separately from the analyst’s measurement errors. In this context, note that the analyst can 

make two types of measurements – (1) measurement of the true value of the physical quantity and (2) measurement 

of the decision-maker’s perceived value of the physical quantity. However, most often, empirical studies have 

access to analyst’s measurements of the true value (perhaps with some error) than the analyst’s measurements of 

the decision-maker’s perceptions. In many contexts (e.g., driver behaviour), it is much more difficult to measure 

decision-makers’ perceived values than to measure the true value of a physical quantity. Even in contexts such as 

mode choice, the analyst may have access to travelers’ perceptions of the attributes (e.g., reported travel times) of 

only their chosen modes. It is not easy to elicit travelers’ perceptions of the attributes of a mode they did not 

choose. Therefore, we use the term perception error to represent the gap between the true value and the decision-

maker’s perceived value of a variable. The term measurement error may be used to represent the gap between the 

true value and the analyst’s measurement of true value of the variable. 

Further, as will be discussed in Section 5.2.3, theories of human perception may be invoked to guide the 

approach to specifying stochasticity due to perception errors (i.e., the gaps between true and perceived values). 

However, no theoretical guidance is available if one treats the gaps between the analyst’s measurement of the true 

values and the decision-maker’s perceived values as measurement errors (recall that the analyst was not even 

trying to measure the perception). If both sources of error – decision-maker’s perception and analyst’s 

measurement of the truth – are prevalent, it is better to represent both these sources separately and bring to bear 

theory and data to inform both sources of stochasticity than to combine them and then try to characterize the 

resulting stochasticity. Finally, in contexts such as driving behaviour, which is an important field of study, the 

decision-maker’s perception errors are likely to be more prevalent than the analyst’s measurement errors. This is 

because drivers perceive and estimate the characteristics of their choice environment in real-time, whereas the 

analysts measure the same characteristics offline. Since much care is taken in deriving the measurements from 

data sources such as traffic videos, it is defensible to assume that the variability in analyst’s errors in measuring 

the true values is negligible than that due to drivers’ errors in perceiving the true values. 
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choice alternatives but are included with alternative-specific coefficients in the utility 

functions.  

Third, most literature on accommodating EIV does so through an additive specification 

of errors in the variables, where the error term specific to a variable is added to the measurement 

of that variable. However, as will be discussed in Section 5.2.2, psychophysical theories of 

human perception of physical quantities motivate the need for using multiplicative errors for 

capturing perception error. In such a specification, the error term specific to a variable is 

multiplied to the measurement of that variable. As a result, the variability due to error in 

perception increases with the magnitude of the quantity being perceived, a pattern that is not 

straightforward to capture using the additive EIV specification. Further, as will be shown in 

Section 5.2.2, the additive approach to specifying EIV does not help in identifying variability 

due to errors in variables that do not vary across alternatives (if there are several such variables 

with perception errors). Only a few studies explore the multiplicative error specification on 

variables in the utility function. For example, Varela et al. (2018) explore both additive and 

multiplicative errors in latent variables to account for measurement errors in travel times and 

travel costs. However, most such studies do not delve into attributes that do not vary across 

alternatives nor focus on perception errors of the travellers.  

5.1.3 Current Study 

In this study, we present a discrete choice modelling framework to accommodate stochasticity 

in choice environment variables that do not vary across choice alternatives. The sources of 

stochasticity may be due to various reasons – decision-makers’ errors in perceiving the choice 

environment, analyst’s error in measuring such variables, or inherent stochasticity of the 

variables. In this chapter, we focus on the decision-makers’ errors in perception as the primary 

source of stochasticity. The model structure takes the form a mixed multinomial logit (ML) 

model where the choice environment variables under consideration are specified as stochastic. 

To operationalize this framework, we evaluate two different ways of specifying errors in choice 

environment variables in discrete choice models – (a) the additive EIV specification (error term 

specific to a variable is added to the measurement of that variable) and (b) the multiplicative 

EIV specification (error term specific to a variable is multiplied to the measurement of that 

variable). Using the multiplicative EIV specification, it is easy to accommodate that quantities 

of larger (smaller) magnitude are perceived with greater (smaller) variability. Further, we show 

that models with an additive error specification run into parameter (un)identifiability issues if 

the analyst attempts to recognize errors in more choice environment variables than the number 
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of choice alternatives minus one. On the other hand, models with multiplicative error are not 

saddled with such identification problems. In fact, in theory, and if data allows, one can attempt 

to recover multiplicative stochasticity separately for as many choice environment variables as 

needed.  

We also discuss the possibility of confounding between the proposed multiplicative 

EIV specification on choice environment variables and correlated random coefficients on the 

same variables. In this context, we show that a correlated random coefficients model is a more 

general specification that subsumes our proposed model with multiplicative EIV as a special 

case. Despite such confounding, we demonstrate that the estimation of a such a general 

specification is not possible (due to parameter unidentifiability) if the source of stochasticity is 

predominantly multiplicative errors in the choice environment variables, as opposed to random 

coefficients on those variables. In such situations, the analyst should estimate the proposed, 

multiplicative EIV model as opposed to the more general, correlated random coefficients 

model. 

 The proposed choice model with multiplicative errors on explanatory variables is 

applied to accommodate drivers’ perception errors in a multi-stimuli-based model of driver 

behaviour in heterogeneous, disorderly (HD) traffic streams using space-time trajectories of 

vehicles from an arterial road in Chennai, India. Specifically, a subject vehicle’s (SV) driver 

behaviour in the traffic stream is represented as a choice from a set of discrete alternatives – 

accelerate, decelerate, or maintain the same speed – at any given time. Variables used to 

represent the driver’s perception of the traffic environment, such as space gaps and relative 

speeds with respect to other vehicles, are considered stochastic to recognize the errors drivers 

make in perceiving those quantities.  

 Before proceeding with the empirical analysis, simulation experiments are carried out 

for the afore-mentioned choice context to evaluate the parameter recovery of the proposed 

model using the maximum simulated likelihood (MSL) estimation method. In addition to the 

proposed ML model with multiplicative perception errors (i.e., multiplicative EIV), we explore 

the efficacy of alternative ML models with random coefficients (instead of stochastic variables) 

and those with error components on the same simulated data. In doing so, we demonstrate that 

the estimation of a general, correlated random coefficients specification is not possible if the 

predominant source of stochasticity is multiplicative errors in the choice environment 

variables, as opposed to random coefficients on those variables. Further, in some empirical 

contexts, since the analyst may not know apriori whether to focus on stochasticity in decision-
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makers’ response to choice environment variables, or their errors in perceiving those variables, 

or both, we conduct additional simulation experiments to develop guidelines for selecting a 

model structure and interpreting it.   

 In the empirical analysis, we explore alternative distributions for specifying 

multiplicative errors on choice environment variables. In addition, using both the estimation 

dataset and a validation dataset, we assess the importance of accommodating multiplicative 

perception errors separately for each choice environment variable. The empirical analysis also 

offers insights on the magnitudes of variability due to perception errors in different traffic 

environment variables.  

In the rest of this chapter, Section 5.2 describes the proposed model structure, along 

with an analysis to identify an appropriate specification to accommodate perception errors in 

choice environment variables in discrete choice models of driver behaviour. In Section 5.3, 

details of the vehicle trajectory dataset used in this chapter are presented. Section 5.4 presents 

the simulation experiments and findings from the experiments. Section 5.5 presents the 

empirical analysis and discusses the empirical findings. Finally, Section 5.6 summarizes the 

chapter. 

5.2 METHODOLOGY 

5.2.1 Model Structure 

Let q  and i  be the indices representing subject vehicles and their discrete manoeuvring choice 

alternatives ( a =  accelerate, d =  decelerate, s =  maintain same speed), respectively, and let 

*

qkx  denote the driver’s perceived value of the thk  traffic environment variable, whose measured 

value by the analyst is qkx . Stack all the traffic environment variables 
*

qkx  perceived by a driver 

of vehicle q  into a vector 
*

qx . The driver-perceived values of 
*

qx  are treated as stochastic 

variables that are known only up to an assumed distribution. The parameters ( )  of the 

distribution *( ; | )q qf x x  of such stochastic variables may be identified using analyst’s 

measurements ( qx ) of those variables and the driver behaviour. In this context, it is assumed 

that the measurements ( qx ), which are typically obtained from observed vehicle trajectory 

datasets, are free of errors (see Footnote 7).  

Consider the following utility specification for each of the discrete manoeuvring choice 

alternatives faced by the driver of the vehicle q : 
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+= +   (5.1) 

In this equation, qiU  is the utility of manoeuvring alternative i  for the driver of vehicle q . 0i  

is the constant specific to i , ik  ( 1,2,..., )k K=  are unknown parameters to be estimated and 

refer to the influence of the corresponding perceived variables *

qkx  (k = 1,2,…,K ) on the 

preference for manoeuvring alternative i , and qi  is an error term assumed to be independently 

and identically (IID) Gumbel distributed. Following the random utility maximization theory, 

the driver of the subject vehicle q  is assumed to choose a manoeuvring alternative i  if 

qi qjU U i j   .  

The conditional likelihood ( )*,  qi qL x  that the driver of vehicle q  makes a manoeuvring 

choice i  given the traffic environment variable values *

qx  is the following logit function: 
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  (5.2) 

In this equation,   in the left side of the equation is a vector of parameters obtained by stacking 

the 0i  and ik  parameters of all choice alternatives. Similarly, *

qx  is obtained by stacking all 

*

qkx  variables ( 1,2,..., )k K= . Assuming a distribution ( )*;qf x   for 
*

qx  and integrating the 

conditional likelihood over the distribution of 
*

qx  results in the following unconditional 

likelihood expression: 

 ( ) ( )*

* * *( , ) , ;
q

qi qi q q q
x

L L x f x dx   =   (5.3) 

Assuming independence across all observations ( )q , the likelihood for the entire data is a 

product of the likelihoods of observed choices across all observations. The unknown parameter 

vector ( , )   can be estimated using the maximum simulated likelihood (MSL) estimation 

routine. Appendix D provides details on estimation of the proposed model, including its 

simulated likelihood function and expressions for the gradients of the simulated likelihood 

function.  
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The likelihood expression in Eq. (5.3) is a mixed logit likelihood expression. However, 

unlike the typical mixed logit models where the coefficients ( )ik  are random, the above model 

assumes the explanatory variables *( )qkx  as random while keeping deterministic coefficients. It 

is worth noting here that the stochasticity in explanatory variables *( )qkx  can potentially be 

confounded with stochasticity in coefficients ( )ik  if the random coefficients on a stochastic 

variable are correlated across different choice alternatives. This issue is discussed in detail in 

Section 5.2.4. Despite such confounding, simulation experiments in Section 5.4 help us identify 

when a model with stochastic choice environment variables is more suitable than a correlated 

random coefficients model. 

5.2.2 Specification of the Stochastic Variables (
*

qkx ) 

The most common approach to specifying errors in variables assumes that the magnitude of 

error is independent of the observed/measured value. Under this assumption, the perceived 

value by the driver of the subject vehicle q  for the thk  variable may be expressed as:  

 
*

qk qk qkx x = +   (5.4) 

where, qk  is a normally distributed error component with expected value zero and standard 

deviation k  (other distributional assumptions may also be explored). Normalizing the mean 

of the error to zero assumes zero bias in perception (with respect to the measurement)8. 

However, this normalization is not sufficient to identify the model with additive error 

specification for choice environment variables that do not vary across choice alternatives. More 

on this in Section 5.2.3.       

An alternative to the classical additive error structure is the multiplicative structure, 

where the perceived value (
*

qkx ) of a choice environment variable is expressed as a product of 

the measured value ( qkx ) and a random error term ( qk ), as below:  

 
8 Our assumption of zero bias with respect to measurement is made for the convenience of identification in the 

absence of additional information to inform bias in perception. However, there is a body of psychophysics 

literature on how human perception of time and other physical quantities is proportional to the magnitude of the 

quantity being perceived and that the bias in perception can be incorporated in the proportionality constant 

(Fechner et al., 1966). The issue of bias in perception is an avenue for further research. 
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 * .qk qk qkx x =  (5.5)9 

Assuming no bias in perception with respect to measurement (i.e., no difference in the expected 

value of  *

qkx  and qkx ), the random error qk  should be specified to have an expected value 

equal to one, i.e. [ ] 1qkE  = . This normalization helps in identification as well. In this chapter, 

we label the proposed choice models with multiplicative perception errors in choice 

environment variables as ML-ME models (for mixed multinomial logit models with 

multiplicative errors).  

A behavioural reason for specifying perception errors in the multiplicative form is that 

the errors humans make in perceiving physical quantities such as distances, time duration, and 

speeds depend on the magnitude of the quantity being perceived (Fechner et al., 1966). This 

observation is consistent with the intuition that larger (smaller) values of the quantity being 

perceived have larger (smaller) variability in perception. In the context of human perception of 

time duration, for example, Allan (2001) utilizes Weber’s law from the field of psychophysics 

to state that the standard deviation of human perception of time duration is directly proportional 

to the mean of the perceived duration. Some of this literature is discussed in detail in a recent 

paper by Chakroborty et al. (2021), who state that “...multiplicative errors are a natural choice 

while handling random variability in perceptions of not only time but also of other physical 

quantities.” This is because multiplicative errors allow naturally for the variability to be larger 

for quantities of larger magnitude. Therefore, in situations where the analyst believes the gap 

between analyst-measured and decision-maker’s perceived quantities is primarily due to the 

decision-maker’s perception errors, a multiplicative error specification may be preferred. 

Besides, physical quantities such as space gaps widely used in driver behaviour models should 

not take negative values. While relative quantities such as relative speeds can be negative, it is 

reasonable to assume that people do not perceive a positive relative speed as negative or vice 

versa. Therefore, the distributions used to represent user perceptions of such quantities should 

not flip the sign of observed values. Multiplicative errors using distributions with support on 

the right half of the real line easily satisfy the above requirements while also allowing both 

larger values (overestimation) and smaller values (underestimation) than the observed values. 

 
9 In another line of literature, multiplicate specification is used for the kernel error terms to develop alternative 

discrete choice models  (see Castillo et al., 2008; Fosgerau and Bierlaire, 2009; Chikaraishi and Nakayama, 2016; 

Ojeda-Cabral et al., 2016) In this study, we stay within the class of additive-RUM models where the kernel error 

term is additively specified.  
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5.2.3 Identification of Stochasticity in Choice Environment Variables  

Consider a driver’s choice occasion with three alternatives – accelerate ( )a , decelerate ( )d , 

and maintain same speed ( )s  – with the corresponding utility functions denoted as qaU , qdU  

and qsU , respectively, and three traffic environment variables that do not vary across 

alternatives ( 1qx , 2qx , and 3qx ) entering the utility functions. Specifically, consider the 

following utility structure: 

 

* * *

0 1 1 2 2 3 3

* * *

0 1 1 2 2 3 3

( ) ( ) ( )

( ) ( ) ( )

qa a a q a q a q qa

qd d d q d q d q qd

qs qs

U x x x

U x x x

U

    
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

= + + + +

= + + + +

=

 (5.6) 

5.2.3.1 Identification for Additive Specification of Error in Choice Environment Variables   

Employing the additive error specification of Eq. (5.4) for choice environment variables, the 

utility structure in Eq. (5.6) may be written as:  

 

0 1 1 2 2 3 3 1 1 2 2 3 3

0 1 1 2 2 3 3 1 1 2 2 3 3

qa a a q a q a q a q a q a q qa

qd d d q d q d q d q d q d q qd

qs qs

U x x x

U x x x

U

          

          



= + + + + + + +

= + + + + + + +

=

 (5.7) 

Let the random components of the above utility functions be written as: 

 

1 1 2 2 3 3

1 1 2 2 3 3

,

,  and

qa a q a q a q qa

qd d

s

q d q d q qd

qs q

       

       

 

= + + +

=

=

+ + +  (5.8) 

Without loss of generality, assume that: (a) the additive perception error terms  qk are normally 

distributed with zero mean and variance 
2

k
 , and (b) the kernel error terms qj  are IID Gumbel 

distributed with zero mean and scale parameter g , with the corresponding variance as 

2 2 2/ 6j g  = . The variance-covariance matrix of the random utility terms ( ,  ,  ) qa qd qs    may be 

derived as below (the derivation of this matrix is provided in Appendix D): 

 
1 2 3 1 2 3

1 2 3 1 2 3

2 2 2 2 2 2 2 2 2 2

1 2 3 1 1 2 2 3 3

2 2 2 2 2 2 2 2 2 2

1 1 2 2 3 3 1 2 3

2

0
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0 0

a a a a d a d a d

a d a d a d d d d

      
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
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 

 = + + + + + 
 
 

 (5.9) 

The corresponding variance-covariance matrix for error differences (with respect to the base 

alternative, maintain same speed) is: 
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 (5.10) 

Observe from the above variance-covariance matrix that its elements do not vary across 

individuals. For examining the identifiability of a model with such a variance-covariance 

matrix, both the order condition (necessary) and the rank condition (sufficient) must be 

employed (Bunch, 1991; Walker, 2001). The order condition states the maximum number of 

parameters that can be estimated, which depends on the number of alternatives in the choice 

set. The rank condition provides the actual number of parameters that can be estimated, which 

is based on the postulated covariance structure. Finally, the positive definiteness of the 

covariance matrix must be verified to determine a valid normalization such that the 

hypothesized model’s true structure is maintained when normalization restrictions are applied.  

When discussing the order condition, it is useful to separate the covariance matrix (

) into two portions – a first (alternative-specific) portion that does not vary across observations 

in the sample and a second (non-alternative specific) portion that varies across observations in 

the sample. The order condition only applies to the first portion. Specifically, the maximum 

number of covariance terms that can be estimated from the first portion of   is given by 

( 1)
1

2

J J
S

−
= − , where J  is the number of choice alternatives. In the current context, the entire 

variance-covariance matrix does not vary across observations. Therefore, with 3J = , S  

becomes 2.  

According to the rank condition, the maximum number of estimable parameters ( )RankM  

is: 

 [ [ ( )]] 1RankM rank jacobian vecu =  −  (5.11) 

where, ( )vecu   is the function to vectorize the unique elements of   into a column vector. 

The resulting ( )vecu  and its Jacobian matrix [ ( )]jacobian vecu   for the error difference 

variance-covariance matrix in Eq. (5.10) are:  
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. (5.13) 

The rank of this Jacobian matrix is 3. It can be verified that even if there were more than three 

traffic environment variables with additive errors, the rank would be equal to 3. Therefore, only 

two parameters can be estimated in the variance-covariance matrix  . This suggests that one 

cannot estimate unique scale parameters associated with the additive perception error terms 

separately for each of the three traffic environment variables.  

The above discussion was for a specific case of 3 choice alternatives. In a general case 

with J  number of choice alternatives, it can be shown that an additive error specification in 

choice environment variables results in order and rank conditions that allow the identification 

of up to 1J −  parameters in the variance-covariance matrix ( ) of error terms. Therefore, in 

contexts with small choice sets (such as the current empirical context with only 3 alternatives), 

it is not possible to explore additive stochasticity in several choice environment variables.  

5.2.3.2 Identification for Multiplicative Specification of Errors in Choice Environment 

Variables 

Employing the multiplicative error specification of Eq. (5.5) for choice environment variables, 

the utility structure in Eq. (5.6) may be written as: 

 

0 1 1 1 2 2 2 3 3 3

0 1 1 1 2 2 2 3 3 3

( ) ( ) ( )

( ) ( ) ( )

qa a a q q a q q a q q qa

qd d d q q d q q d q q qd

qs qs

U x x x

U x x x

U

       

       



= + + + +

= + + + +

=

 (5.14) 

Let the random components of the above utility terms can be written as: 

 

1 1 1 2 2 2 3 3 3

1 1 1 2 2 2 3 3 3

( ) ( ) ( )

( ) ( ) ( )

qa a q q a q q a q q qa

qd d q q d q q d q q qd

qs qs

x x x

x x x

       

       

 

= + + +

= + + +

=

 (5.15) 

As discussed earlier, the random error qk  should be specified to have an expected value of 

one, i.e., [ ] 1qkE  = . Further, the sign of a perceived variable value can be assumed to be the 

same as that of the observed value. And physical quantities such as distances and time ought 

to be positive. Therefore, distributions with domain on the positive side of the real line are 

suitable for qk .  
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To continue the discourse, let us assume that: (a) the perception error term qk  is 

lognormally distributed with location parameter k , scale parameter 
k

 , and mean 1, and (b) 

the kernel error terms qj are IID Gumbel with location parameter zero and scale parameter g  

(variance 2 2 2/ 6g  = ). For the expected value of the lognormally distributed qk  term to be 

1 its parameters should fulfil the restriction that 1,2,3
2

k

k
k




−

=  = . With these assumptions, 

one can derive the variance-covariance matrix of the stochastic utility terms as below: 

 

( ) ( , ) ( , )

( , ) ( ) ( , )

( , ) ( , ) ( )

qa qa qd qa qs

qa qd qd qd qs

qa qs qd qs qs

Var Cov Cov

Cov Var Cov

Cov Cov Var

    

    

    

 
 

 =  
 
 

 (5.16) 

where,  

( )

2 2 2 2 2 2 2
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The corresponding covariance matrix of error differences with respect to the base alternative 

is: 

 
( ) ( ) 2 ( , ) ( , ) ( )

( , ) ( ) ( ) ( ) 2 ( , )

qa qs qa qs qa qd qs

qa qd qs qd qs qd qs

Var Var Cov Cov Var

Cov Var Var Var Cov

      

      

+ − + 
 =  

+ + − 
 (5.17) 

Observe from the above variance-covariance matrix that, unlike in the case of additive error 

specification, the measurements qkx  enter the variance-covariance matrix and render its 

elements to vary across observations. Such additional information derived from the variation 

of the covariance matrix across observations helps in uncovering stochasticity (
k

 parameters) 

for as many traffic environment variables as needed; just as the typical mixed logit model 

allows the estimation of random coefficients on any number of alternative attributes (Walker, 

2001). In sum, the multiplicative error specification, in theory, allows the estimation of 

stochasticity in any number of choice environment variables entering the utility functions – as 

long as the variables have a statistically significant influence on the choice outcome. Of course, 
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empirical identifiability issues might arise if one attempts to uncover stochasticity in too many 

variables. 

5.2.4 Comparison with the Error Components Specification  

It is important to note that the above discussed multiplicative specification allows separate 

identification of stochasticity for each choice environment variable (i.e., one can estimate 
k

  

separately for each *

qkx ) that has a statistically significant influence on the choice outcome. 

Therefore, unlike in Díaz et al. (2015),  there is no need to combine the stochasticity of all 

variables into alternative-specific error components. This helps in: (1) interpretation of the 

uncovered stochasticity separately for each choice environment variable and (2) comparing 

variability due to perception errors in different choice environment variables. 

 Note that stochasticity in choice environment variables introduces differential variance 

across choice alternatives (because of alternative-specific coefficients on these variables) and 

correlations among utility functions (because of common stochastic variables entering different 

utility functions). Therefore, one might suggest that error components that allow 

heteroscedasticity across alternatives or correlation among choice alternatives can help capture 

stochasticity due to perception errors in choice environment variables. This is unlikely because 

multiplicative stochasticity is not easily separable from the deterministic utility function into 

error components. Therefore, existing variants of mixed logit models such as error component 

models may not be suitable to accommodate such stochasticity. This is demonstrated through 

both simulated data and empirical data in Sections 5.4 and 5.5, respectively.  

5.2.5 Comparison with the Random Coefficients Specification 

In the context of the multiplicative stochasticity specification as in Eq. (5.5) for choice 

environment variables, the stochasticity in the qk  term might be confounded with random 

heterogeneity in ik  (i.e., drivers’ sensitivity to the variable *

qkx ), even if the intent of including 

it is to capture stochasticity in *

qkx . One can see this by substituting qk qkx   for *  qkx in the utility 

functions, as below:  

 

0
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0
1k

K

qk qk qa
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qk qk qd

qs
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qd d dk
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
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+
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+   (5.18) 
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There are two possible cases in the context of random coefficients in the above utility functions. 

The first case is when ak  and dk  are random but uncorrelated. The risk of confounding 

between the stochasticity in qk  and that in ak  and dk  is low in this case. This is because ak  

and dk   are alterative specific and their distributions would be different, even if their standard 

deviations are of same value. On the other hand, the distribution of *

qkx  is the same regardless 

of which alternative’s utility function it enters, because *

qkx  does not vary across alternatives. 

Therefore, if there are no strong reasons to believe that ak  and dk  are correlated, one can 

safely interpret qk  as representing stochasticity due to perception errors than random 

heterogeneity in ak  or dk . 

 The second, more general case is when ak  and dk  are correlated random coefficients 

(CRC). There is a high risk of confounding in this case because the correlation between ak  

and dk  can pick up the stochasticity in qk , which reduces the need for (and identifiability of) 

a separate qk  term. Therefore, in situations with both stochastic variables ( *

qkx ) and correlated 

random coefficients on those variables, the correlated random coefficients (CRC) model 

structure without additional qk  terms might suffice. Alternatively, an uncorrelated random 

coefficients model with additional qk  terms may be explored as well. In either case, one cannot 

separately identify the correlations between random coefficients from stochasticity in the 

variables. Nonetheless, either of these models would work better than a model with only 

multiplicative stochastic terms ( qk ) and no random coefficients.10  

However, an important question in this context is whether the CRC model can be used 

if the primary source of stochasticity is in *

qkx , not in its coefficients. In such situations, 

although the CRC model is a more general structure that subsumes the multiplicative stochastic 

variable model as a special case, the former model would run into parameter (un)identifiability 

 
10 For the same reason, the CRC model without the qk  term can be used to represent the first case with 

uncorrelated random coefficients ( ak  and dk ) and stochasticity ( qk ) in the choice environment variable, 

assuming the distributional assumptions allows recasting of one model to the other. Such a model would have the 

same number of parameters (means and standard deviations of ak  and dk , and a correlation parameter) as a 

model that separately estimates uncorrelated random coefficients and stochasticity in *

qkx , ceteris paribus. In this 

case, the CRC model structure would not be superior to a model with uncorrelated random coefficients and 

stochastic variables. If the analyst believes the correlation among random coefficients in a CRC model is due to 

stochasticity in the corresponding variable, then the latter model should be used for interpretation. 
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problems during estimation. To understand this better, consider the following utility functions 

with correlated random coefficients that are lognormally distributed:  

( )( )

( )( )

1

0 1

1 2

0 1

exp 1

exp 1 1

K

qa a akRC ak qak qk qak

K

qd d dkRC dk k qak k qdk qk qdk

qs qs

U Z x

U Z Z x

U

   

     



−

=

−

=

 = + −  − +
 

  = + −  − + − +    

=



  (5.19) 

In the above utility structure, the correlations are between the random coefficients of qkx  in the 

utility functions of alternatives a  and d  ( qakZ  and qdkZ   are standard normal variates). The 

lognormally distributed random coefficients are: ( )( )1exp 1akRC ak qakZ  −  −  −
   and 

( )( )1 2exp 1 1dkRC dk k qak k qdkZ Z   −  −  − + −    
, respectively. In this utility structure, 

when the following restrictions are imposed: ak dk k  = =  and 1k = , it implies that the 

random coefficients on qkx  in the utility functions of alternatives a  and d  are exactly the same 

(i.e., perfectly correlated). In such a special case, when the expected values of the random 

components of the coefficients become 1, i.e., ( )( )1exp 1 1ak qakE Z −  −  − =
  

 and 

( )( )1 2exp 1 1 1dk k qak k qdkE Z Z  −   −  − + − =      
, the utility structure simplifies as 

below: 
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  (5.20) 

Assuming ( )2exp 0.5ak qak k qkZ  − =  , ( )exp akRC ak = , and ( )exp dkRC dk = , the above 

utility structure simplifies to that in Eq. (5.18), where qk  is viewed as a multiplicative error 

on qkx .  

In sum, the proposed model with multiplicative stochasticity (EIV) on a choice 

environment variable is a special case of a CRC model with perfectly correlated random 

coefficients on that variable. Given this result, a natural question is what is the need for the 

proposed multiplicative EIV model in Eq. (5.18) when it is a special case of a more general, 
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CRC model? To answer this question, it is important to note that one cannot estimate a CRC 

model when the primary source of stochasticity is multiplicative EIV and not random 

parameters (for variables that are not alternative-specific). The estimation would lead to 

identification problems because the single source of stochasticity (multiplicative EIV) is not 

sufficient to identify different random parameters that are perfectly correlated, have the same 

scale parameters, and have an expected value of 1 (this is demonstrated using simulated data 

in Section 5.4.4). In such situations, only if the above-mentioned constraints are imposed, a 

CRC model would be identified. But such a model is the same as the model with multiplicative 

EIV and no random coefficients. Therefore, when the data has only multiplicative stochasticity 

in attributes and no random heterogeneity in response to those attributes, the multiplicative EIV 

specification should be preferred.  

5.2.6 Alternative Distributions for Multiplicative Errors in Choice Environment Variables 

As indicated earlier, choice environment variables representing physical quantities such as 

distance, time, and speeds cannot be negative. Also, it is reasonable to assume that people do 

not perceive positive relative speeds as negative or vice versa. Therefore, the distributions used 

for multiplicative errors in such choice environment variables should not flip the sign of the 

observed value. Further, the expected value of the distribution ought to be normalized to 1 for 

identification and for zero bias in perception. The statistical literature has a variety of 

distributions with support on the positive semi-infinite interval. In this study, we explored the 

following three distributions: (1) the power lognormal (PLN) distribution, which subsumes the 

lognormal distribution as a special case, (2) the Weibull distribution, which subsumes the 

Rayleigh distribution and the exponential distribution as special cases, and (3) The Fréchet 

distribution.  

Table D.2 in Appendix D provides a brief overview of each of these distributions, 

including their density function, permissible ranges of parameter values and support of the 

distribution. In addition, the expression for the location parameter ( )  is provided as a function 

of the scale parameter ( )  and other (if any) parameters of the distribution – to normalize the 

expected value of the distribution to 1. The expressions for inverse CDF function and standard 

deviation are provided when the expected value of the distribution is equal to 1. The inverse 

CDF function is useful for simulating the corresponding distributions in MSL estimation. The 

standard deviation is useful for comparing variations in perception errors of different variables.  
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The first application of PLN distribution in the choice modelling literature was by Bhat 

and Lavieri (2018), who used it for random coefficients on travel time and travel cost variables. 

Other than the location parameter and scale parameter, a power parameter ( )p  governs the 

thickness of the distribution’s tail. At 1p = , the distribution becomes lognormal. As the value 

of p  increases beyond 1, the tail of the distribution becomes thinner. This property, as 

discussed in Bhat and Lavieri (2018), makes it easier to estimate the parameters of a PLN 

distribution (when 1p  ) compared to those of a lognormal distribution. Note also that the 

location parameter can be any real value for PLN and lognormal distributions while keeping 

the support to be strictly positive. Thanks to this property, there is no need to constrain the 

value of   (i.e., the analyst can let the data decide its value).  

For the other distributions reviewed in the table, however, the location parameter ( )  

cannot be negative. This, combined with the normalization that the expected value is 1, imposes 

a constraint on the permissible values of the scale parameter. Furthermore, for these 

distributions   is the minimum value that a random variable can take. All these constraints 

make it difficult to estimate models with such distributions for multiplicative errors in choice 

environment variables. This is because estimating a scale parameter (while 0  ) implies that 

the distribution of the perception error does not allow values less than  . This implies that 

people do not underestimate choice environment variables below what is permissible by   – 

an assumption that cannot be easily justified. Instead, setting   a prespecified value fixes 

(restricts) the scale parameter because of the normalization that the expected value is 1. 

Therefore, the PLN distribution is likely to be more suitable than the other distributions for 

multiplicative stochasticity.  

5.3 DATA 

The main source of data used in this study – both for simulation experiments and empirical 

analysis – comes from a 30-minute video of a heterogeneous traffic stream on an urban arterial 

stretch of 245 m in the city of Chennai, India. Kanagaraj et al. (2015) processed the raw video 

data into vehicle trajectories and made it available for use by the research community. Their 

vehicle trajectory data includes information on the type and dimensions of each vehicle in the 

video and the space-time trajectory of each vehicle at a 0.5 s resolution, including the position, 

speed, and acceleration/deceleration values in both the longitudinal and lateral dimensions (to 

the roadway).  
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In Chapter 3, we further processed this data to identify a rectangular influence zone 

around each vehicle at each time step of 0.5 s, as shown in Figure 5.1. The influence zone was 

of length 30 m (plus the vehicle’s length) with the road boundaries defining the width of the 

influence zone. In this figure, the vehicle in red colour and marked SV is the subject vehicle. 

The influence zone around the SV is divided into five compartments. The space directly ahead 

of SV is labelled the middle front (MF) compartment, the space ahead to the left of SV is 

labelled the left front (LF) compartment (similarly the space ahead to the right of SV is called 

the RF compartment), and the adjacent space to the left of SV is called the left side (LS) 

compartment (space to the right side of SV is called the RS compartment). Vehicles in each of 

these compartments are labelled accordingly as shown in the legend of the figure. 

 

Figure 5.1 Structure of influence zone around a subject vehicle 

At each 0.5 s time instance t  for each subject vehicle, the following data were identified: (a) 

the longitudinal and lateral position, speed, and acceleration/deceleration/steady speed states 

of the subject vehicle at the time instance t  and at 0.5 st −  (note: 0.5 s is considered the 

reaction time, based on an analysis in Chapter 3) (b) all other vehicles and their characteristics 

(type and dimensions) and infrastructure elements within the influence zone at 0.5 st − ,  and 

(c) traffic environment variables such as space gaps and relative speeds of the SV with respect 

to other vehicles and infrastructure elements in the influence zone at 0.5 st − . The final data 

comprises 17,852 observations from 749 passenger cars. Of these records, a subset was chosen 

for simulation experiments and empirical analysis. The remaining data were set aside for 

validation purposes. 
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5.4 SIMULATION STUDY   

We carried out simulation experiments for the following purposes: (a) to evaluate the ability to 

identify and retrieve parameters of the proposed multiplicative EIV model using MSL 

estimation, (b) to compare the performance of the proposed multiplicative EIV model against 

the typically used mixed logit models with random coefficients or error components when the 

data generation process (DGP) has stochasticity in explanatory variables *( )qkx  but not in their 

coefficients (  )ik , (c) to evaluate alternative model structures when the DGP has stochasticity 

in the coefficients of choice environment variables (  )ik , but not in the variables themselves 

*( )qkx , and (d) to develop guidelines for which model structure to use when. This section 

describes the simulation setup, presents the results, and discusses findings from the simulation 

experiments.  

5.4.1 Experimental Design for Synthetic Dataset Generation 

To generate synthetic datasets for the simulation experiments, we used a subset of 8,540 

observations from the earlier-described empirical data for measurements of the explanatory 

variables (  qkx ). The data were used to estimate simple empirical models for the proposed 

model structure with multiplicative perception errors for the traffic environment variables. 

Next, the parameter estimates of these empirical models were assumed as ‘true’ parameter 

values and applied back on the same empirical data to calculate the utility function values for 

each choice alternative – acceleration, deceleration, and maintain same speed. To do so, the 

random components of the utility functions were simulated according to their assumed 

distributions. Subsequently, the alternative with the highest utility value was denoted the 

chosen alternative.  

 The following four variables were assumed to enter the utility function of a subject 

vehicle (SV) 'q s  driver: (a) speed of the SV 
*

1( )qx , perceived longitudinal space gap between 

SV and MF1
*

2( )qx , perceived relative speed of between SV and MF1 
*

3( )qx , and perceived 

relative speed between SV and LF1 
*

4( )qx . Among these four variables, it was assumed that the 

SV’s driver would know her/his vehicle’s speed accurately (i.e., 
*

1 1q qx x= ). The other three 

variables were considered stochastic due to multiplicative perception errors. That is, 

* ( 2,3,4)qk qkqkx kx = = , where qkx  is the observed value of the thk  traffic environment variable 

and qk  is the multiplicative error term assumed to be power lognormal (PLN) distributed. The 
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resulting utility functions for acceleration, deceleration, and maintain same speed decisions – 

, ,qa qd qsU U U – are as below: 
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 (5.21) 

In the above utility functions, ak  and dk  ( 1,2,3,4)k =  are coefficients of the traffic 

environment variables ( * ; 1,2,3,4qkx k = ) in the acceleration and deceleration utility functions, 

respectively. The parameters of the PLN distributed terms ( ; 2,3,4)qk k =  for perception errors 

are the scale parameter k  and power parameter kp , with the location parameter k  set to be 

equal to
1/1

1

0

ln exp( )( )kp

k dy y −
 

− −
 
  to ensure unit expected value for the distribution. Finally, 

qa , qd  and qs  are IID standard Gumbel error terms. Table 5.1 (in its second column) provides 

the true values of ik   and k  used for generating the synthetic datasets. The power parameter 

kp  was set to be 3 for all three stochastic variables 
* ( 2,3,4)qkx k = . For brevity, the resulting 

model is labelled the ML-ME-PLN model, to indicate that the multiplicative errors are 

specified to be PLN distributed. 

  A total of 115 datasets of 8,540 records each were generated for the ML-ME-PLN 

model. The average of the sample shares of acceleration, deceleration, and maintain same speed 

choices simulated across these datasets are 41.9%, 45.7%, and 12.4%, respectively, which are 

similar to those observed in the empirical data. 

5.4.2 Parameter Recovery of the Proposed ML-ME-PLN Model 

The following performance metrics were computed to evaluate the accuracy and precision with 

which the parameters of the proposed model were recovered using the MSL estimation method: 

• Absolute percentage bias (APB): Estimate parameters for each of the 115 datasets and 

compute the mean of the estimates across all datasets. For each parameter, 

mean estimate - true value
100

true value
APB =  . 

• Finite sample standard error (FSSE): FSSE, a measure of the empirical standard error, 

is the standard deviation of the parameter estimates across the 115 datasets. 
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• Asymptotic Standard Error (ASE): ASE is the mean of standard error across all 

datasets. 

• Root mean squared error (RMSE) = ( )
2 2mean estimate - true value FSSE+  

A summary of the above performance measures is presented in Table 5.1 for each 

parameter, along with the true value of each parameter. As can be observed from the table, the 

proposed model was able to accurately recover parameters even when only 200 Halton draws 

were used to simulate the distributions of perception errors. The mean APB value across all 

parameters is 4.75%, which is small. The low FSSE values suggest a high empirical (finite-

sample) efficiency in recovering the parameters. While the FSSE values for the scale 

parameters of perception error distributions are relatively higher than those for the coefficients 

of explanatory variables, their absolute values are small. Also, the ASE values are close to the 

corresponding FSSE values, except for the scale parameter 4 , suggesting that the ASE values 

provide a good approximation to the FSSE values in finite samples. A high ASE value for 4  

(relative to its FSSE value) may be because of the use of empirical data from the field for 

measurements of the explanatory variables.11  

Table 5.1 Metrics of Parameter Recovery for the ML-ME-PLN Model 

Parameters True value Mean 

estimate 
APB (%) FSSE ASE RMSE 

0a  2.010 1.978 1.585 0.230 0.265 0.232 

0d  -1.320 -1.375 4.172 0.233 0.298 0.240 

1a  -0.100 -0.094 5.549 0.024 0.027 0.025 

1d  0.230 0.240 4.147 0.024 0.029 0.026 

2a  0.030 0.026 14.235 0.012 0.011 0.013 

2d  -0.120 -0.120 0.315 0.045 0.050 0.045 

3a  0.330 0.334 1.346 0.094 0.095 0.094 

3d  -0.390 -0.417 6.828 0.103 0.118 0.107 

4a  0.100 0.094 6.228 0.026 0.026 0.027 

4d  -0.020 -0.021 5.804 0.015 0.018 0.015 

2  2.760 2.535 8.152 0.339 0.365 0.407 

3  2.030 2.038 0.389 0.325 0.354 0.325 

4  1.250 1.212 3.028 0.416 1.136 0.418 

Mean value -- -- 4.752 0.145 0.215 0.152 

Nevertheless, the RMSE measure, which combines the bias and efficiency measures into a 

single metric across all parameters, is small suggesting very good parameter recovery. 

Importantly, these results demonstrate that it is possible to separately identify stochasticity in 

 
11 When we conducted additional simulations using fully simulated data (i.e., the measurements of explanatory 

variables, too, were simulated), we observed accurate and efficient parameter recovery for all parameters and did 

not encounter issues such as the ASE and FSSE values being quite different. 
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each choice environment variable through the proposed specification, rather than combining 

the stochasticity of all variables into a few error components. This helps in obtaining insights 

on which variables are associated with greater variability than others. 

5.4.3 Performance of Alternative Mixed Logit Models with Random Coefficients or Error 

Components when the Primary Source of Stochasticity in DGP is in *

qkx , Not in ik  

In addition to the proposed ML-ME-PLN model with the utility specification as in Equation 

(5.21), the following alternative ML models were estimated on the same simulated data from 

Section 5.4.1:  

(a) ML model with PLN distributed uncorrelated random coefficients (labelled ML-RC-

PLN), with the following utility structure:  
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Here, qak  and qdk  are PLN distributed (and uncorrelated) random coefficients on qkx  

in the acceleration and deceleration utility functions, respectively. The location and 

scale parameters of these random coefficients are to be estimated.  

(b) ML model with PLN distributed and correlated random coefficients (labelled ML-

CRC-PLN). In this model, the utility equations would look similar to those in Eq. (5.22)

, except that the PLN distributed  random coefficients  qak  and qdk  are correlated with 

a correlation parameter k . The correlated PLN distributed terms can be expressed as:  
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 (5.23) 

Recall (from Section 5.2.5) that the correlated random coefficients model subsumes the 

multiplicative EIV model as a special case when the corresponding random coefficients 

are perfectly correlated (with same scale parameters) and have an expected value of 1. 
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(c) ML model with error components for correlation between the utility functions of 

acceleration and deceleration alternatives, but no random coefficients or stochastic 

variables (labelled ML-EC-rho), as below: 
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Here, qad  is a normal distributed error component with mean zero (and scale to be 

estimated) to allow correlation between the acceleration and deceleration utility 

functions.  

(d) ML model with error components for heteroscedasticity across choice alternatives, but 

no random coefficients or stochastic variables (labelled ML-EC-het), as below: 
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Here, qa  and qd  are normal distributed error components with mean zero (and scale 

parameters to be estimated) to allow heteroscedasticity across utility functions.  

To compare the proposed ML-ME-PLN model vis-à-vis alternative ML models with 

random coefficients or error components, we compared the model fit using the Akaike 

Information Criteria (AIC) and the Bayesian Information Criteria (BIC). Table 5.2 presents the 

percentage of simulated datasets (of the 115 datasets) for which each alternative model 

structure showed better AIC or BIC values than others. As can be observed from this table, the 

proposed ML-ME-PLN model provided a better fit than all other ML models in more than 92% 

of the datasets. The ML model with PLN distributed but uncorrelated random coefficients was 

better for less than 7% of the datasets. Interestingly, the model with PLN distributed and 

correlated random coefficients never performed better than the ML-ME-PLN model (more on 

this soon). And neither of the error components models performed better in any of the 115 

datasets. The above results suggest that typically used ML models with random coefficients on 

a choice environment variable or those with error components do not necessarily help in 

capturing stochasticity in that variable (if multiplicative EIV, not random coefficients, is the 
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predominant source of stochasticity). In addition, such models lead to inferior fit to data and 

potentially biased parameter estimates.  

Table 5.2 Performance of alternative mixed logit models when the data generation process 

has stochasticity in choice environment variables 

Preferable model over the other models 

No. of 

datasets 

according 

to AIC (%) 

No. of 

datasets 

according to 

BIC (%) 
  ML-ME-PLN model (PLN distributed stochastic variables) 94.78 93.04 

  ML-RC-PLN model (PLN distributed uncorrelated random coefficients) 5.22 6.96 

  ML-CRC-PLN model (PLN distributed correlated random coefficients)* 0.00 0.00 

  ML-EC-rho model for correlation between qaU   and qdU  0.00 0.00 

  ML-EC-het model for heteroscedasticity across alternatives 0.00 0.00 

Total number of simulated datasets 115 

* Parameter identification problems were faced when estimating the ML-CRC-PLN model 

Importantly, the ML-CRC-PLN model, even though it is a more general model that 

subsumes the DGP (with only multiplicative stochastic variables) as a special case, could not 

be estimated in most of the 115 datasets. Attempts to estimate this model resulted in non-

invertible hessians or very high standard errors for estimates related to the correlated random 

coefficients. These manifestations are characteristic of an unidentified model. Further, the 

correlation parameter ( k ) estimates, if the corresponding standard errors could be determined, 

were of high magnitude (higher than 0.9) indicating near perfect correlation between the 

corresponding random coefficients across different choice alternatives. These results 

corroborate our claim in Section 5.2.5 that the correlated random coefficients model cannot be 

used when the primary source of stochasticity is predominantly due to multiplicative 

stochasticity in choice environment variables. In such a situation, the analyst should estimate a 

simpler model that directly specifies multiplicative stochasticity in choice environment 

variables than a CRC model. 

5.4.4 Performance of Alternative Mixed Logit Models when Underlying Data has Only 

Random Coefficients on 
*

qkx  but No Stochasticity in 
*

qkx  

Now we examine which model performs better when the underlying data has random 

coefficients in the choice environment variables but no stochasticity in those variables. To do 

this, we simulated 100 sets of datasets – each set includes six datasets simulated assuming six 

different DGPs as described below (each dataset is of sample size 3,000): 
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1. DGP1: Two uncorrelated random coefficients on a choice environment variable (in two 

different utility functions), with scale parameter values close to each other (scale 

parameters are 1.00 and 1.20,   = 0.0). 

2. DGP2: Two uncorrelated random coefficients on a choice environment variable, and 

the scale parameters are not close to each other (scale parameters are 0.80 and 1.50,   

= 0.0). 

3. DGP3: Two correlated random coefficients on a choice environment variable, with 

scale parameter values close to each other, and correlation level is high (scale 

parameters are 1.00 and 1.20,   = 0.7). 

4. DGP4: Two correlated random coefficients on a choice environment variable, with 

scale parameter values close to each other, and correlation level is low (scale parameters 

are 1.00 and 1.20,   = 0.3). 

5. DGP5: Two correlated random coefficients on a choice environment variable, their 

scale parameter values are not close to each other, and correlation level is high (scale 

parameters are 0.80 and 1.50,   = 0.7). 

6. DGP6: Two correlated random coefficients on a choice environment variable, their 

scale parameter values are not close to each other, and correlation level is low (scale 

parameters are 0.80 and 1.50,   = 0.3). 

Table 5.3 presents the performance of alternative mixed logit models for all six cases 

according to the AIC metric. As can be observed, in each of the six cases, for a majority of the 

100 simulated datasets, the true DGP model performs better than the ML-ME-PLN model that 

specifies multiplicative stochasticity on the variable. These results suggest that when the 

underlying DGP has random coefficients with or without correlations, a model that specifies 

only multiplicative stochasticity on the corresponding variables is less likely to pick up such 

stochasticity. Only for DGP3, where the random coefficients have similar standard deviation 

values and high correlation, the multiplicative stochasticity model showed better performance 

in 29% of the datasets. That is, the multiplicative error model is likely to pick up correlated 

random sensitivities to an attribute only if the correlation is high and the standard deviations of 

random coefficients are similar.12  

 
12 We simulated another set of 100 datasets with two uncorrelated random parameters that have the same standard 

deviation value, along with stochasticity on the variable with random coefficients. For these datasets, a model 

with only stochastic variables did not perform as well as a model with uncorrelated random coefficients and 

stochasticity on the variable. In fact, we were able to recover the model parameters very well for the latter model 

that reflects the DGP. These results, combined with the other results in this section suggest that the multiplicative 

error model is unlikely to pick up random heterogeneity in correlated coefficients unless the correlation is high 

and standard deviations are of similar value.   

To be sure of our conclusions in this section, we also compared the statistical fit of alternative models using 

the BIC metric as well. The BIC metric favoured the ML-ME-PLN model with multiplicative stochastic variables 

more often than the AIC metric. This is because BIC penalizes complex models (i.e., models with more 
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Table 5.3 Statistical performance of alternative ML models (according to AIC)  

Data generating 

process 

No. of datasets where ML-

CRC-PLN model is 

preferred over the other 

models 

No. of datasets where ML-

RC-PLN model is 

preferred over the other 

models 

No. of datasets where ML-

ME-PLN model is 

preferred over the other 

models 

DGP1 -- 87 13 

DGP2 -- 95 5 

DGP3 71 -- 29 

DGP4 82 -- 18 

DGP5 81 -- 19 

DGP6 90 -- 10 

5.4.5 Guidance for Model Selection 

Based on the conceptual discussions in Section 5.2 and the simulation experiments in this 

section, here we provide a few guidelines to help the analyst decide which model structure to 

work with – for choice environment variables that do not vary across alternatives. 

• First, in addition to the basic MNL, if the analyst believes the presence of stochasticity due 

to random coefficients, or EIV, or both, then estimate all three models – a random 

coefficients model without correlations (RC model), a CRC model considering correlated 

random coefficients across different choice alternatives, and a multiplicative EIV model 

without random coefficients on the variables with errors. One may also estimate a 

multiplicative EIV model with uncorrelated random coefficients on the variables with 

errors. However, such a model can be recast as a CRC model if the distributional 

assumptions allow doing so. 

• Considering that most empirical research involves moderate-sized datasets of a few 

thousand samples or less, use the AIC metric to determine a preferred model structure. In 

addition to the data fit metrics to select a model structure, use the following guidelines for 

interpretation. 

• If the CRC model estimation shows signs of unidentifiability (as discussed in Section 5.4.4) 

and the correlation parameter estimate is of high value for a choice environment variable 

under consideration, there is a high likelihood that the EIV for that variable is the 

 
parameters) more heavily than AIC (Bishop, 2006). Given a family of models, including the true model, the 

probability that BIC will favour the correct model approaches one as the sample size tends to infinity (Hastie et 

al., 2009). Since we used a sample size of only 3000 for our simulated datasets, and since it is known that the BIC 

metric penalizes complex models more heavily than the AIC metric, we used the AIC metric for our evaluation.  
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predominant source of stochasticity. The goodness-of-fit metrics such as AIC would favour 

the EIV specification. 

• If the CRC model (or an EIV model with uncorrelated random coefficients) offers better 

statistical fit than the other models, then the underlying DGP may be one of the following: 

(1) correlated random sensitivities to the variable under consideration, or (2) uncorrelated 

random sensitivities to the variable in addition to EIV in the variable, or (3) both correlated 

random sensitivities and EIV. In such a case, the analyst should use their judgement from 

the empirical context to determine if the correlations are due to correlated sensitivities on 

a variable, or EIV, or both. For example, in the driver behaviour context, it is unlikely that 

unobserved sensitivities to variables such a space gaps and relative speeds have positive 

correlation between the acceleration and deceleration choice alternatives. Several 

unobserved factors such as driver demographics and aggressiveness are likely to be 

associated with opposite preferences between acceleration and deceleration decisions. So, 

positive correlation between random coefficients of such choice alternatives, if any, is 

likely due to drivers’ perception errors. On the other hand, if the variable under 

consideration is the type of the lead vehicle in driver behaviour models or traveller’s age in 

mode choice models the likelihood of EIV is small, for vehicle type (age) can be perceived 

(measured) accurately. In essence, the analyst should combine statistical fit and intuitive 

considerations to decide the model structure and its interpretation.  

5.5 EMPIRICAL ANALYSIS 

5.5.1 Alternative Model Specifications 

To incorporate perception errors in traffic environment variables, we estimated only models 

with the multiplicative specification of perception errors. This is because the additive 

specification (as discussed in Section 5.2) is saddled with parameter identifiability problems. 

A variety of distributions – lognormal, power lognormal (PLN), Rayleigh, Weibull, 

exponential, and Fréchet – were explored to represent multiplicative perception errors for 

traffic environment variables. As discussed earlier, the location parameter ( )  of each of these 

distributions was specified as a function of the scale parameter such that the expected value of 

the distribution was 1. Doing so made it difficult to estimate models for all distributions except 

PLN and lognormal distributions, for the reasons discussed in Section 5.2.6. On the other hand, 

setting   to zero and imposing an expected value of 1 resulted in an inferior model fit. Such 

restrictions automatically imply the scale parameter value of the distribution without utilizing 
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empirical data to inform it. Therefore, we explored model specifications with PLN and 

lognormal distributions for the perception errors.  

Specifications with lognormal distributions also encountered convergence problems, 

presumably because of the fat tail of the distribution (Bartels et al., 2006; Bhat and Lavieri, 

2018). Therefore, a subsequent empirical analysis of the ML-ME model was conducted with 

PLN distribution for the multiplicative errors (i.e., the ML-ME-PLN model). To begin with, 

the power parameter value was fixed at 1.1, and other parameters were estimated. 

Subsequently, the power parameter was increased in increments of 0.1, and all other parameters 

were estimated. This was continued to find the maximum of maximum likelihood values 

among all estimated models.  

In addition to the basic MNL models and the proposed ML-ME-PLN model, all 

alternative ML models discussed in Section 5.4.3 were estimated. The estimations were carried 

out on a subset of 9,530 records of the available empirical data. All estimations were carried 

out using 400 Halton draws to simulate distributions of the stochastic variables (or parameters) 

other than the IID Gumbel kernel error terms. In addition, all the estimated models were applied 

to the remaining 8,322 records set aside for validation. 

Among all the models estimated, the ML-EC (error component) models did not yield 

significant error components and were not statistically different from the basic MNL model, 

corroborating our finding from the simulation experiments that multiplicative perception errors 

in choice environment variables cannot be captured through the error component models. 

Among the random coefficients models we estimated, similar to the experience with simulated 

datasets in Section 5.4.3, estimation of the correlated random coefficients (ML-CRC-PLN) 

model showed clear signs of parameter unidentifiability. For example, the parameter estimates 

of random coefficients on a few traffic environment variables had very high standard errors. 

Also, different starting values for the parameters resulted in different convergent values with 

the same log-likelihood value, suggesting a flat likelihood surface. We could estimate 

correlated random coefficients on only one traffic environment variable – relative speed 

between SV and the first lead vehicle in the middle front compartment. Even for this variable, 

the estimated correlation parameter between the random coefficients in acceleration and 

deceleration utility functions was not statistically different from 1. Such perfect correlation 

suggests stochasticity in the variable (not in coefficients of the variable).  
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5.5.2 Goodness of Fit in Estimation and Validation Datasets 

Table 5.4 summarises the performance metrics of the best fitting specifications of all other 

models estimated in this study on both estimation and validation datasets. In the estimation 

dataset, the log-likelihood ratio (LLR) tests to compare each of the ML models against the 

MNL model suggest that the latter model can be rejected at least at a 95% confidence level. 

Among all the ML models, the proposed ML-ME-PLN model with multiplicative stochasticity 

provides the best AIC, and rho-square values in the estimation data. Further, we performed a 

non-nested hypothesis test proposed by Horowitz (1983) to compare the proposed ML-ME-

PLN model with each of the other ML models. In this test, the null hypothesis that the model 

with a lower rho-squared value is the true model is rejected at the significance level given by: 

 ( ) ( )( )
1

2 2 2Significance Level =  2 (0)H L H LLL K K 
 

 − − −  + − 
 

 (5.26) 

where, 2

L  is the adjusted likelihood ratio index for the model with the lower value, 2

H  is the 

adjusted likelihood ratio for the model with the higher value, HK  and LK  are the number of 

parameters in models H  and L , respectively, and   is the standard normal cumulative 

distribution function. Using this test, the null hypotheses that the ML-CRC-PLN and ML-RC-

PLN are the true models were rejected at a significance level smaller than 0.001. All these 

results suggest that the ML-ME-PLN model provides the best fit to the empirical data. Findings 

from the application of all the estimated models to the validation dataset are similar, with the 

ML-ME-PLN model providing better predictive metrics than other models. These results 

suggest that allowing for perception errors in traffic environment variables is more important 

than allowing unobserved heterogeneity in drivers’ response to those variables, at least in the 

current empirical context. 

Table 5.4 Goodness-of-fit measures of various models estimated in this study  

Goodness-of-fit measures in estimation data (N=9,530) 

Measures 
MNL 

model 

ML-ME-

PLN model 

ML-RC-PLN 

model 

ML-CRC-

PLN  

model 

Log-likelihood at zero  -10469.8 -10469.8 -10469.8 -10469.8 

Log-likelihood at constants -9316.9 -9316.93 -9316.9 -9316.9 

Log-likelihood at convergence ( )L  -8202.2 -8174.3 -8184.1 -8192.3 

Number of parameters ( )K  21 25 23 23 

LLR w.r.t. MNL (degrees of freedom) -- 55.8 (df = 4) 36.3 (df = 2) 19.9 (df = 2) 

AIC value [2 2ln( )]K L−  16446.4 16398.5 16414.1 16430.5 

Adj rho-square w.r.t. constants model  0.118 0.120 0.119 0.118 

Predictive goodness-of-fit measures in validation data (N=8,322)  

Predictive log-likelihood -7427.6 -7410.9 -7416.4 -7415.4 

Predictive AIC value 14897.1 14871.9 14878.8 14876.8 
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5.5.3 Empirical Findings 

Table 5.5 reports the best fitting empirical specification of the ML-ME-PLN model, which is 

the best performing model of all the models estimated in this study. The findings from this 

model are discussed in detail, followed by a brief comparison with findings from the other 

models. The estimation results of other models are reported in Appendix D. 

5.5.3.1 Empirical Findings on Perception Errors 

Various empirical specifications were explored to incorporate stochasticity due to errors in 

perceiving the space gaps and relative speeds of the SV with respect to its surrounding vehicles. 

This includes: (1) a specification with each (and every) traffic environment variable having its 

own perception error term, (2) a specification with all space variables having a common error 

term and all relative speed variables having a common error term, and (3) the specification 

presented in this section, where perception error terms were specified to be common for all 

longitudinal space gaps with respect to vehicles in a given compartment (but different from 

those in other compartments); and similar specification for relative speed variables. As such, a 

total of ten PLN distributed stochastic terms were explored for the multiplicative error terms 

(  )qk  in the model formulation. This specification provided the best fit as well as interpretation 

among all other specifications.  

The bottom set of rows in Table 5.5 reports the scale parameter estimates of the 

perception error distribution terms in the ML-ME-PLN model. As can be observed, the 

empirical model yielded stochasticity due to perception error in five sets of traffic environment 

variables: (a) longitudinal space gaps of the SV with respect to MF1 and MF2, (b) relative 

longitudinal speeds of the SV with respect to MF1 and MF2, (c) relative longitudinal speed of 

the SV with respect to LF1, (d) relative longitudinal speed of the SV with respect to RF1, and 

(e) lateral gaps between lead vehicles in the front compartments (i.e., MF1-LF1 lateral gap and 

MF1-RF1 lateral gap). 
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Table 5.5 Estimation results of the ML-ME-PLN model * 

Explanatory variables in the utility functions (maintain same speed is the base 

alternative) 

Acceleration  

utility  

Deceleration  

utility 

Constant  1.970 (7.18) -0.880 (-3.41) 

Subject vehicle (SV) longitudinal speed (m/s) -0.102 (-3.83) 0.231 (9.31) 

Traffic environment variables with respect to MF1 (first vehicle in MF) at t-0.5 s 
  

Space gap in longitudinal direction (m) 0.023 (2.00) -0.087 (-2.78) 

Relative speed in longitudinal direction (m/s) 0.196 (4.53) -0.259 (-5.28) 

Traffic environment variables with respect to MF2 (second vehicle in MF) at t-0.5 s 
  

Subject vehicle has 2 or more lead vehicles (One lead vehicle is base) -0.627 (-4.58) -- 

Space gap in longitudinal direction (m) 0.021 (1.81) -- 

Relative speed in longitudinal direction (m/s) 0.208 (3.70) -0.120 (-2.60) 

Traffic environment variables with respect to LF1 (first vehicle in LF) at t-0.5 s 
  

Subject vehicle has 1 or more lead vehicles (No lead vehicle is base) -- 0.448 (3.83) 

Space gap in longitudinal direction (m) -- -0.014 (-3.07) 

Lateral gap between MF1 and LF1 (m) 0.109 (2.55) -- 

Relative speed in longitudinal direction (m/s) 0.126 (2.40) -- 

Traffic environment variables with respect to RF1 (first vehicle in RF) at t-0.5 s 
  

Subject vehicle has 1 or more lead vehicles (No lead vehicle is base) -- -- 

Space gap in longitudinal direction (m) -- -- 

Lateral gap between MF1 and RF1 (m) -- -- 

Relative speed in longitudinal direction (m/s) 0.083 (3.21) -- 

Traffic environment variables with respect to LS1 (first vehicle in LS) at t-0.5 s 
  

Subject vehicle has 1 or more side vehicle (No side vehicle is base) -0.201 (-1.98) -- 

Lateral space gap (m) 0.097 (3.29) -- 

Relative speed in longitudinal direction (m/s) -- -- 

Traffic environment variables with respect to RS1 (first vehicle in RS) at t-0.5 s 
  

Subject vehicle has 1 or more side vehicle (No side vehicle is base) -- -- 

Lateral space gap (m) -- -- 

Relative speed in longitudinal direction (m/s) -- -- 

Position of subject vehicle (SV) at t-0.5 s 
  

Space gap between left edge of the SV and left edge of the road (m) -- -0.121 (-6.55) 

Variables on which perception error is considered in the ML-ME-PLN model 
Scale 

parameter 

Standard 

deviation 

Longitudinal space gaps (m) - between SV & MF1 and between SV & MF2    2.501 (7.39)** 0.076 

Relative longitudinal speeds (m/s) - between SV & MF1 and between SV & 

MF2 
  1.441 (5.38)** 0.160 

Space gap (m) in longitudinal direction between SV & LF1 -- -- 

Relative speed (m/s) in longitudinal direction between SV & LF1 1.670 (1.87)*** 0.743 

Space gap (m) in longitudinal direction with respect to RF1 -- -- 

Relative speed (m/s) in longitudinal direction between SV & RF1 1.240 (1.21)*** 0.598 

Lateral gaps (m) between MF1 & LF1 and between MF1 & RF1 1.591 (1.66)*** 0.715 

Lateral gap (m) between SV & LS1 and between SV & RS1 -- -- 

Relative speed (m/s) in longitudinal direction between SV & LS1 -- -- 

Relative speed (m/s) in longitudinal direction between SV & RS1 -- -- 

Notes: *t-statistic for each estimated parameter is reported in parentheses next to it. Maintain same speed is the base alternative. ** 

Power value is fixed at 2.5. *** Power value is fixed at 1.5. -- the parameter was dropped from the specifications as it was 

insignificant. 

 



 

 

130 

 

Statistically significant stochasticity was not uncovered for the other five sets of traffic 

environment variables due to different reasons. For example, we could not uncover a 

statistically significant scale parameter for the longitudinal space gap with respect to RF1. This 

result should not necessarily be interpreted as the absence of errors in perceiving this variable. 

To understand this, note from the earlier rows in the table that the variable does not enter the 

model specification. The coefficient of the variable was not statistically significant when the 

variable was included in the specification. The implication is that one cannot identify 

stochasticity due to perception error of a variable that does not have a strong influence on the 

choice outcome. For the same reason (that the variables did not have a statistically significant 

influence in the utility functions), the model did not yield statistically significant variability in 

the perception of relative speeds of the SV with respect to side vehicles (LS1 and RS1). For 

lateral gaps of the SV with respect to side vehicles (LS1 and RS1), stochasticity in perception 

was not uncovered, possibly because these vehicles tend to be in very close proximity of the 

SV making its driver pay close attention to them.  

Based on the scale and power parameters for the variables for which stochasticity in 

perception was uncovered, the standard deviation of the power lognormal distribution ( )PLNStd  

may be calculated using the following expression:  

 ( )( )
1

1 1/ 2

0

exp 2 2p

PLNStd y dy Mean −
  

= −  + − 
  
  (5.27) 

The corresponding standard deviation parameters are reported in Table 5.5 in the column titled 

“Standard deviation.” Comparing the magnitudes of standard deviation of relative speeds, it 

can be observed that the stochasticity due to perception error in relative speeds with respect to 

MF1 and MF2 is much lower than that for other vehicles (LF1, RF1). That is, a greater variation 

is reflected in driver perceptions of the traffic environment that is not directly ahead of them. 

This may be because drivers pay greater attention to vehicles directly ahead of their vehicle 

than those that are not ahead; hence, lower variability in perception for vehicles directly ahead 

of the SV. Another observation is that stochasticity due to perception errors for relative speeds 

with respect to MF1 and MF2 is greater than that for space gaps with respect to those vehicles. 

This result suggests that drivers perceive relative longitudinal speeds less precisely than 

longitudinal space gaps. Having said that, the drivers’ perception of lateral gaps between two 

vehicles in the front compartments is associated with greater uncertainty in perception than that 

associated with longitudinal space gaps. This may be because perceiving lateral gaps between 
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two moving vehicles is more difficult than perceiving longitudinal gap with respect to one 

vehicle. While all these findings sound plausible, this is perhaps the first study to shed light on 

differences in the uncertainty of perception of different traffic environment variables. 

Therefore, additional empirical evidence is needed before stronger conclusions can be made. 

5.5.3.2 Empirical Findings other than Perception Errors 

The empirical model results in Table 5.5 offers interesting insights from the ML-ME-PLN 

model. As expected, and reported by Koutsopoulos et al. (2012), a subject vehicle (SV) 

travelling at a higher longitudinal speed is less (more) likely to accelerate (decelerate) than that 

travelling at a slower speed. Further, as the relative speed or space gap of the SV with respect 

to the first lead vehicle (MF1) increases (decreases), the SV is more likely to accelerate 

(decelerate). In this context, the magnitude of the coefficient on space gap with respect to MF1 

in the deceleration decision is greater than that for the acceleration decision. Similarly, the 

magnitude of the coefficient on relative speed with respect to MF1 in deceleration decision is 

greater than that for acceleration decision. These results suggest that the influence of space gap 

and relative speed is stronger on the decision to decelerate than on the decision to accelerate. 

This may be because the deceleration decision is more safety-critical than the acceleration 

decision. 

As discussed in Chapter 3, space gaps and relative speeds with respect to multiple vehicles 

influence the subject vehicle drivers’ manoeuvring decisions highlighting the need to move 

beyond single-leader car-following models. In addition to the immediately leading and the next 

vehicle (MF1 and MF2) in the space directly ahead of the subject vehicle, vehicles in the left 

front (LF1), right front (RF1) and left side (LS1) also affect drivers’ decisions. For each of the 

above vehicles, the parameter estimates are in line with the expected direction of their 

influence. For example, greater (smaller) space gaps are associated with a higher (lower) 

likelihood of acceleration and greater relative speeds are associated with a higher likelihood of 

acceleration. 

One of the differences between the proposed ML-ME-PLN model and the other models is 

worth noting. As per the ML-ME-PLN model, reducing the lateral gap between the vehicle in 

the MF1 and LF1 compartment might not increase the deceleration likelihood relative to the 

maintain same speed alternative. On the other hand, the MNL and the ML-RC-PLN models 

suggest otherwise, that reducing the lateral gap can lead to an increased likelihood of 

deceleration. This is perhaps because these models do not consider variability in the perception 
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of the variable. In addition, several parameter estimates in the ML-ME-PLN (model with 

perception errors) have greater magnitudes than those in the MNL, ML-RC-PLN, and ML-

CRC-PLN models; perhaps due to differences in the scales of the kernel error terms across the 

different models. 

5.6 CONCLUSIONS  

 This chapter proposes a discrete choice modelling framework that accommodates perception 

errors in choice environment variables that do not vary across choice alternatives. The 

framework takes the form of a mixed multinomial logit (ML) model where the choice 

environment variables under consideration are specified as stochastic. To operationalize this 

framework, an analysis is undertaken to evaluate two different ways of specifying stochastic 

variables in discrete choice models – (a) the additive EIV specification and (b) the 

multiplicative EIV specification. The additive specification assumes the errors to be 

independent of the magnitude of the quantity being perceived, whereas the multiplicative 

specification renders the variability in errors to depend on the magnitude of the quantity (i.e., 

higher errors for higher magnitudes). The latter is more suitable to represent errors in human 

perceptions of physical quantities. An econometric identification analysis suggests that only 

two variance-covariance parameters can be estimated for a discrete choice model with three 

alternatives with an additive error specification of errors in the choice environment variables. 

On the contrary, a multiplicative specification allows, in theory, separate identification of 

stochasticity in as many variables as the analyst would want to test – as long as the variables 

have a significant influence on the choice outcome. This helps in comparing the variability due 

to perception errors in different types of choice environment variables. 

 It is shown that the proposed model with multiplicative EIV for an attribute that does 

not change across alternatives is a special case of a more general model with correlated, 

alternative-specific random coefficients (CRC) on that attribute. However, if the primary 

source of stochasticity is due to multiplicative EIV and not due to random heterogeneity in the 

coefficients on the variable, then the more general, CRC model cannot be estimated due to 

parameter (un)identifiability issues. In such a case, it is advisable to estimate the proposed 

multiplicative EIV model. Other typically used mixed discrete choice models such as 

uncorrelated random coefficients or error components models (either for heteroskedasticity or 

inter-alternative correlations) are also not suitable in lieu of multiplicative perception errors. In 

addition to the conceptual discussions, we conducted extensive simulation experiments to 

verify this claim.  



 

 

133 

 

It is also shown, through simulation experiments, that when the underlying DGP is 

random coefficients on such choice environment variables (whether correlated or 

uncorrelated), the multiplicative EIV model does not provide a better performance than the true 

DGP model unless the random coefficients have similar standard deviation values and high 

correlation. Of course, when both multiplicative EIV for a variable and correlated random 

heterogeneity in sensitivities to that variable are prevalent, it is difficult to separately identify 

the multiplicative EIV from correlated random coefficients. In such a case, it is preferable to 

estimate the CRC model.  

We demonstrate the usefulness of the proposed multiplicative EIV model through an 

empirical application for analysing driver behaviour using space-time trajectories of vehicles 

from a traffic stream in Chennai, India. In this context, a subject vehicles’ (SV) driver 

behaviour at an instance in a traffic stream is characterized as the driver’s choice to accelerate, 

decelerate, or maintain same speed as a function of the various traffic environment variables 

such as space gaps and relative speeds between the SV and other vehicles around it. The 

empirical analysis results suggest that consistent with the findings from simulation 

experiments, the proposed ML model with power lognormal (PLN) distributed perception 

errors in traffic environment variables outperformed typically used ML models with random 

coefficients or error components. A correlated random coefficients (CRC) model showed signs 

of parameter (un)identifiability and high correlation values suggesting that the primary source 

of stochasticity is due to errors in the traffic environment variables, not random coefficients on 

them. These results suggest that in driver behaviour models, it may be more important to 

accommodate drivers’ errors in perceiving their traffic environment than to focus on random 

sensitivities to the traffic environment variables (if one must choose between the two). Of 

course, in other empirical contexts, one can always explore the correlated random coefficient 

model to explore the presence of both sources of stochasticity. In the context of the 

distributional assumptions explored for perception errors, the PLN distribution allowed better 

estimability and offered better fit to the empirical data than alternative distributions such as 

lognormal, Weibull, Rayleigh, exponential, and Fréchet.  

The empirical model offered interesting insights on perception errors in traffic 

environment variables. First, greater variation was found in drivers’ perceptions of the traffic 

environment variables with respect to vehicles that are not directly ahead of their vehicles (than 

those that are ahead). This may be because drivers pay greater attention to vehicles directly 

ahead of their vehicle than those that are not ahead. Second, stochasticity due to perception 
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errors for relative longitudinal speeds was found to be greater than that for longitudinal space 

gaps; perhaps because drivers perceive relative speeds less precisely than space gaps. Third, 

drivers’ perception of lateral gaps between two moving vehicles ahead is associated with 

greater uncertainty than that associated with longitudinal space gaps with respect to any of 

those vehicles. Fourth, it was not possible to recover variability due to perception errors for 

variables that did not influence the choice outcome.  
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CHAPTER 6 A TWO-DIMENSIONAL, MULTI-VEHICLE ANTICIPATION, AND 

MULTI-STIMULI BASED LATENT CLASS FRAMEWORK TO MODEL 

DRIVER BEHAVIOUR IN HETEROGENEOUS, DISORDERLY TRAFFIC 

CONDITIONS 

Abstract  

This study formulates a latent class-based driving behaviour framework for modelling 

vehicles’ two-dimensional (2D) movements while considering drivers’ strategic intents and 

multi-vehicle anticipation (MVA) in heterogeneous, disorderly (HD) traffic conditions. 

Specifically, five extensions are proposed to a typical stimulus-response based driving 

behaviour framework. First, the subject vehicle’s 2D movements are represented as a 

combination of the angular direction of movement with respect to the longitudinal axis and the 

magnitude of acceleration or deceleration along the angle. Second, a latent class framework 

is used to recognize drivers’ strategic intents (latent to the analyst) in two dimensions: (a) the 

intent to accelerate, decelerate, or maintain a constant speed, and (b) the intent to steer to the 

left of, right of, or straight along the longitudinal axis. It is hypothesized that these strategic 

intents precede tactical decisions such as how much to accelerate or decelerate and which 

specific angular direction to move along. Third, the MVA effect is accommodated to recognize 

that drivers consider stimuli from multiple vehicles in their vicinity. Fourth, a multi-stimuli 

model of acceleration (deceleration) is formulated assuming that drivers choose an angle of 

movement that allows them to move with the highest (lowest) possible longitudinal acceleration 

(deceleration). Fifth, drivers’ execution errors are recognized as the difference between their 

planned acceleration and executed acceleration. The proposed framework is applied for an 

analysis of motorised two-wheeler driver behaviour using a vehicular trajectory dataset from 

India. The empirical results highlight the importance of incorporating MVA and considering 

driver’s intents while modelling 2D movements of vehicles in HD traffic conditions. Further, 

the microscopic traffic environment variables are found to have a stronger influence on 

drivers’ higher-level, strategic intents than on their lower-level, tactical decisions. 

Note: The material in this chapter is drawn from the following paper: 

Nirmale, S. K., Pinjari, A. R., and Chakroborty P. (2022). A Two-Dimensional, Multi-Vehicle 

Anticipation, and Multi-Stimuli Based Latent Class Framework to Model Driver Behaviour in 

Heterogeneous, Disorderly Traffic Conditions. (In review with Transportation Research Part 

C: Emerging Technologies). 
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6.1 INTRODUCTION 

Single-leader car-following models, where a subject vehicle (SV) is assumed to follow a single 

lead vehicle (LV) ahead of it, have been extensively used to model driver behaviour in both 

homogeneous and heterogeneous, disorderly (HD) traffic conditions. Further, most literature 

in this area focuses on vehicles’ longitudinal movement, while lane-changing models are used 

to consider lateral movements separately from longitudinal movements. However, emerging 

literature (Kanagaraj and Treiber, 2018; Sarkar et al., 2020) and some early studies (Bexelius, 

1968; Lenz et al., 1999; Hoogendoorn and Ossen, 2006) argue that assuming a single leader’s 

influence and/or separating longitudinal movements from lateral movements may not 

adequately represent driver behaviour. There is increasing evidence of multi-vehicle 

anticipation (MVA), where drivers consider influences (or stimuli such as space gaps and 

relative speeds) from multiple vehicles in the vicinity of their vehicle to make their 

manoeuvring decisions. Recent studies suggest a greater extent of the MVA effect in HD traffic 

conditions observed in countries such as India than that in homogeneous traffic conditions. 

Further, unlike in homogeneous traffic streams, in HD traffic streams, drivers’ manoeuvres are 

not only restricted to longitudinal vehicle-following. Instead, a considerable portion of 

vehicular movements tends to be two-dimensional (2D), where vehicles might move in an 

oblique direction that results in a simultaneous movement along the longitudinal and lateral 

directions. The extent of such 2D movement has been observed to be substantial for motorised 

two-wheelers, which comprise a significant portion of the traffic mix in HD traffic streams. 

Therefore, driver behaviour in HD traffic conditions is better represented by considering both 

2D movements and the MVA effect. Only a few studies (Lee et al., 2009; Shiomi et al., 2012; 

Amrutsamanvar, 2020; Sarkar et al., 2020) consider the influence of multiple vehicles while 

modelling 2D movements of a subject vehicle. 

Furthermore, the driving actions observed in vehicle trajectory datasets typically 

available to the analysts do not reveal the drivers’ actual intents. They only reveal the final 

driving actions taken on the road, in the form of the extent of acceleration or deceleration and 

the angular direction of the movement with respect to the direction of traffic flow (i.e., the 

longitudinal direction). These driving actions or manoeuvres executed by the drivers while 

travelling on a road are typically preceded by their intents to accelerate, decelerate, or maintain 

a constant speed and to steer to the left of, right of, or straight along the longitudinal direction. 

However, very small acceleration or deceleration values and slight angular deviations from the 

direction of traffic flow are common even if the drivers intend to maintain a constant speed 
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state and to move in a straight path, respectively. This is due to the difficulty in maintaining 

zero acceleration and avoiding any lateral movement. Therefore, it is helpful to consider 

drivers’ intents while modelling their 2D movements. However, as mentioned earlier, the actual 

intents of drivers are unobserved or latent to the analyst, and only the outcome of the driver’s 

actions (such as the extent of acceleration and angular deviation from the direction of traffic 

flow) can be observed in the vehicle trajectory datasets. While some literature exists on 

modelling drivers’ intents or latent plans in homogeneous traffic streams (Choudhury, 2007; 

Koutsopoulos and Farah, 2012; Choudhury and Islam, 2016), none exists on modelling driver 

intents in HD traffic streams while considering 2D movements.  

As discussed above, driving manoeuvres in HD traffic streams involve multifaceted 

decisions such as: (a) the intent to accelerate, decelerate, or maintain a constant speed, (b) the 

extent of acceleration or deceleration, (c) the intent to steer or orient to the left of, right of, or 

straight along the traffic flow direction, and (d) the specific angular direction of movement. 

These decisions must be made quickly based on the drivers’ perceptions of the constantly 

evolving traffic environment around them. However, from a cognitive science standpoint, 

humans are endowed with a limited amount of cognitive resources such as working memory 

they need to store and process information for making decisions (Sweller, 1988). Therefore, 

drivers might allocate their cognitive resources optimally to quickly make their manoeuvring 

decisions. Specifically, given the multifaceted decisions drivers need to make in a short 

timeframe and the complexity of the traffic environment around them, it is plausible that they 

break down their decision-making into manageable steps for cognitive ease. Limited efforts 

have been made in the literature to explore behavioural mechanisms of how drivers might break 

down complex driving tasks. In this context, there is scope to explore if analysing drivers’ 

intents (which are latent to the analyst) first, followed by the specific actions they take, can 

help in filling this gap (see Choudhury, 2007; Koutsopoulos and Farah, 2012; Choudhury and 

Islam, 2016 for some work in this direction). For instance, it may be that higher-level, strategic 

decisions – such as the intents of whether to accelerate, decelerate, or maintain a constant speed 

and whether to steer to the left of, right of, or keep straight along the longitudinal direction – 

are made first, followed by lower-level, tactical decisions – such as exactly how much to 

accelerate or decelerate and which specific angular direction to move along. In this context, we 

conjecture that a greater amount of cognitive effort might be invested in making the higher-

level, strategic decisions or intents than that for making lower-level, tactical decisions. This is 

likely because, as will be seen in the empirical analysis, a greater amount of information is 
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processed for making higher-level intents than that for making lower-level decisions. The 

current study aims at gathering evidence toward this conjecture using statistical analysis of the 

trajectory data, without necessarily delving into measurements of the cognitive loads exerted 

in making the above-mentioned decisions. 

In the existing literature, the latent class modelling approach has been used to consider 

latent (to the analyst) intents or plans of the drivers for modelling driving behaviour 

(Choudhury, 2007; Koutsopoulos and Farah, 2012; Choudhury and Islam, 2016). In another 

stream of literature, various approaches have been employed to model drivers’ 2D movement. 

These include (but are not limited to) the force field approach (Chakroborty et al., 2004; 

Kanagaraj and Treiber, 2018), the simulation-based approach (Maurya, 2007b; Mathew et al., 

2013), the two-dimensional continuum modelling approach (Vikram et al., 2022), and the 

utility theory-based models (Lee, 2007; Shiomi et al., 2012; Sarkar et al., 2020). A third stream 

of literature highlights the influence of the MVA effect on driver behaviour. However, most 

studies in the literature considered the above-discussed aspects – drivers’ intents latent to the 

analyst, 2D movement of vehicles, and the MVA effect – in isolation. Such studies in the 

context of HD traffic conditions are even more sparce in the literature. Importantly, we are not 

aware of any driver behaviour model that considers drivers’ intents and 2D movements 

simultaneously while also recognizing the MVA effect for analysing driver behaviour in HD 

traffic streams. The current study fills this specific gap by formulating a latent class-based 

driving behaviour framework that considers drivers’ intents for modelling vehicles’ 2D 

movements while considering the MVA effect on these movements in HD traffic situations. 

Specifically, the following extensions are proposed to a conventional stimulus-response based 

driving behaviour framework: 

1. The observed 2D movements of a subject vehicle (SV) are represented as a combination 

of: (a) the angular direction (or orientation) of movement with respect to the longitudinal 

direction and (b) the magnitude of acceleration or deceleration along the direction.   

2. The observed 2D movements of an SV at a time instance are assumed to be a result of a 

sequential decision-making process of its driver, where higher-level (strategic) decisions 

precede lower-level (tactical) decisions. The higher-level decisions are drivers’ intents 

along the following two dimensions: 

(a) the intent to accelerate, decelerate, or maintain a constant speed, and   

(b) the intent to steer to the left of, right of, or straight along the longitudinal 

direction. 
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The lower-level decisions are the tactical decisions of how much to accelerate or 

decelerate and which specific angular direction to move along.  

A latent class framework is utilised to model drivers’ intents as they are latent to the 

analyst. Conditional on the intents, the lower-level decisions are modelled. The sequential 

decision-making assumption combined with our two-stage modelling framework allows 

us to gather evidence toward our conjecture that the extent of cognitive effort needed for 

making higher-level intents is different from those for making lower-level choices. In the 

absence of measurements of cognitive load, this is achieved by comparing the strength of 

influence of various traffic environment variables on the higher- and lower-level 

decisions. 

3. The MVA effect is accommodated, wherein the driver of an SV is assumed to consider 

stimuli from multiple vehicles within its two-dimensional influence zone for making their 

intents and manoeuvring decisions. 

4. For the lower-level decisions, a multi-stimuli model of acceleration is formulated based 

on the assumption that drivers choose a specific angle of movement that allows them to 

move with the highest (lowest) possible longitudinal acceleration (deceleration) if they 

intend to accelerate (decelerate).  

5. Drivers’ execution errors are modelled as the difference between their planned extent of 

acceleration or deceleration and the executed acceleration values.  

Finally, an empirical application of the proposed framework for motorised two-wheelers is 

presented using an HD traffic conditions trajectory dataset from Chennai, India.    

The rest of this chapter is structured as follows. Section 6.2 describes the proposed 

modelling framework. Section 6.3 discusses the Chennai trajectory dataset and variables used 

to build the empirical model. Section 6.4 presents the empirical model results (using trajectory 

data from Chennai) and discusses insights on the driver behaviour of motorised two-wheelers 

in HD traffic streams. Finally, Section 6.5 summarises the main findings of this chapter. 

6.2 METHODOLOGY  

As discussed earlier, the observed extent of acceleration (or deceleration) and the specific 

steering direction executed by a driver while travelling on the road are preceded by her/his 

intents. Therefore, the proposed modelling framework analyses the driver’s intents and her/his 

vehicle’s 2D movements using a two-stage modelling framework that comprises the following 

components: (a) a latent class model component for analysing the driver’s higher-level 
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decisions or intents, and (b) intent-specific models (class-specific models) for analysing the 

driver’s lower-level decisions such as the specific steering angle and the extent of acceleration 

or deceleration. In addition, the framework incorporates variability due to execution error – the 

difference between the driver’s planned (or modelled) acceleration values and the executed 

acceleration values. Each of these model components is discussed next. 

6.2.1 Latent Class Model Component for Analysing Higher-Level Decisions (Intents) 

Since a driver’s higher-level intents cannot be observed in trajectory datasets, they are 

probabilistically mapped to the observed manoeuvring actions of the driver, as shown in Figure 

6.1. In this figure, the driver’s intents are shown in ovals, while the observed manoeuvring 

outcomes are shown in rectangles. This is done separately for two different types of intents – 

the first type is the acceleration intent, which pertains to the intent to accelerate ( )A , decelerate 

( )D , or maintain a constant speed ( )C  and the second type is the steering direction intent, 

which pertains to the intent to steer to the left of ( )L , right of ( )R , or straight along ( )S  the 

longitudinal direction. Note that the observed steering angles to the left of the longitudinal axis 

are denoted as +ve angles and those to the right of the longitudinal direction are denoted as -ve 

angles.  

The overall set of latent intents considered in this study comprises a combination of 

acceleration intents and steering direction intents – a total of nine possible intent combinations 

given by the set  , , , , , , , ,J AL AS AR CL CS CR DL DS DR= . In the elements of this set, the 

letters A , C , and D  correspond to the acceleration intents and the letters L , S , and R  

correspond to the steering direction intents. For example, AL corresponds to the driver’s intent 

to accelerate and steer left of the longitudinal direction. 

The logit function in Eq. (6.1) is used to model the driver’s intents that are latent to the analyst:  
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Here, ( )( )q t tP s+  is the probability that the driver of a subject vehicle q  at time ( )t t+  intends 

to make a higher-level decision (or intent) s  from the set J  of the possible intents; qtkx  

represents the kth explanatory variable in the set of K  traffic environment variables (e.g., space 
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gaps and relative speeds with respect to surrounding vehicles at time t ) influencing the driver’s 

intent; and k
s  is the corresponding parameter to be estimated. Note that t  is the reaction 

time assumed to be constant for all drivers (in future research, it would be useful to relax this 

assumption to allow heterogeneity in reaction times (Toledo, 2003)).  

It is easy to consider the MVA effect in the above expression by including stimuli 

(space gaps and relative speeds) from multiple surrounding vehicles as explanatory variables. 

Note here that the effect of traffic environment variables need not be specified separately in 

each intent s   from the set J . Instead, the analyst can employ a parsimonious, dimension-wise 

specification (more on this later). 

 

Figure 6.1 Defining latent intents based on observed manoeuvring actions of drivers 

 

6.2.2 Intent-Specific Model Components for Analysing Lower-Level Decisions 

In this study, conditional on the higher-level decisions (or intents), drivers are assumed to make 

the following lower-level decisions: (a) a specific steering angle and (b) the specific extent of 

acceleration (if the intent is to accelerate) or deceleration (if the intent is to decelerate). Since 

there are nine possible higher-level decisions (intents), we specify the models of steering angle 

choice and the extent of acceleration or deceleration for each of these intents. To do so, some 

notational preliminaries are provided next. 
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To model the steering angle, we discretise the two-dimensional space ahead of the subject 

vehicle (SV) into a set of six angles, as shown in Figure 6.2. Each of these angles is represented 

by a ray i  beginning from the subject vehicle (vertex of the angle) and bisecting the angle. In 

the set I  of these rays, where  1 2 3 1 2 3, , , , ,I l l l r r r= , the rays 1 2 3, ,l l l  represent angles 0  to 1o o
, 

1  to 3o o
, and  3o , respectively, in the anticlockwise direction. And the rays 1 2 3, ,r r r  represent 

angles 0  to 1o o
, 1  to 3o o

, and 3o , respectively, in the clockwise direction. For each of these 

angles, the angle measure i  extended between the longitudinal axis and the corresponding ray 

i  is taken as it’s steering angle value. For any vehicle steering along a given angular direction 

i , it is assumed to be steering at angle i  with respect to the longitudinal axis. The set of 

i i I    corresponding to all rays/angular directions in the set I  is 

0 0{0.5 ,2 ,9 , 0.5 , 2 , 9 }o o o o = − − − . In this set, 9o
and 9o− are taken as angle values for 3l  and 3r

, respectively, as observed data did not show many vehicles steering beyond 15o to the 

longitudinal axis. 

Note that the choice set of steering angles ( i ) considered by a driver depends on their 

steering angle intent (refer Figure 6.3). That is, if they intend to steer left of the longitudinal 

axis, they are assumed to consider the angles represented by  1 2 3, ,LI l l l=  or the steering angle 

values given by 
0{0.5 ,2 ,9 }o o

L = . If they intend to steer right, they would consider the angles 

represented by  1 2 3, ,RI r r r=  or the steering angles values given by 
0{ 0.5 , 2 , 9 }o o

R = − − − . If 

they intend to steer straight (i.e., along the longitudinal axis), they would consider the angles 

represented by  1 2 1 2, , ,SI l l r r=  or the steering angle values given by 

0 0{0.5 ,2 , 0.5 , 2 }o o

S = − − , as no one would intend to keep straight but end up steering beyond  

03  (of the longitudinal axis). 
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Figure 6.2 Division of the 2D roadway space ahead of a vehicle into steering angles  

 

 

Figure 6.3 Mapping between steering direction intents ( s ) and steering angles ( i ) 

6.2.2.1 Steering angle choice models conditional on the intents ,  , ,  and AL AR DL DR  

For the intents  and AL AR , the drivers are assumed to choose a specific steering angular 

direction i  (or the corresponding steering angle i ) that allows them to proceed with the 

maximum possible longitudinal acceleration. If the intents are either  or DL DR , they are 

assumed to choose a steering angle that allows them to proceed with the minimum possible 
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longitudinal deceleration. This is because drivers prefer to arrive at their destination as quickly 

as possible without spending additional time than necessary on the road (Chakroborty et al., 

2004). Therefore, the model for the choice of a specific steering angular direction i  conditional 

on intents ,  , ,  or AL AR DL DR  is specified as an acceleration maximisation model (or 

deceleration minimisation model) as below: 

 
( )  ( ) ( ) ( ) ( )( ), , , s s s

q t t q t t i q t t j q t t
P i s AL AR DL DR P A A j G

+ + + +
 =     (6.2) 

Here, ( )
s

q t t i
A

+
 is the specific longitudinal acceleration value with which the driver can proceed 

along the angular direction i  at time ( )t t+  conditional on the higher-level intent being s . 

( )
s

q t t
G

+
 is the choice set of angular directions available for the driver conditional on the intent 

s  (see Figure 6.3 and relevant discussion). Note that Eq. (6.2) uses an acceleration 

maximisation formulation for both acceleration and deceleration intents because the term 

( )
s

q t t i
A

+
 can take both positive values (for acceleration) and negative values (for deceleration).  

6.2.2.2 Acceleration model conditional on the intents ,  , ,  and AL AR DL DR  

We propose the following multi-stimulus response-based model for ( )
s

q t t i
A

+
 in Eq. (2): 

( ) ( ) ( )
( )

( ) ( )( )

( )
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3
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s
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s qt
s

i s q

s

tiq t t i curb

s i qti i qt

s

qtides des

qt i

s i qti

s

q t t i
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qti

V V
A D

X
A

X X
f

X

V

a






  









+

+

 
 
+ − 

=   + 
 +  − + −  −  

 
+  

+









=

 (6.3) 

In the above model, the following three different types of stimuli are considered for the 

longitudinal acceleration that a subject vehicle (SV) can proceed with along the direction i  at 

time ( )t t+ :  

(1) The difference between the driver’s desired longitudinal speed (
desV ) and the subject 

vehicle’s longitudinal speed ( qtV ) at time t , assuming that drivers prefer to drive at a given 

desired speed. 

(2) The available space ahead of the SV along the direction i , after subtracting the minimum 

space gap ( des

qtX ) acceptable to drivers. This space is computed as 
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( ) ( )( )1 rdes scu b

i qti i

de

q qt t qtiX XX X  − + −  − , where i  is a dummy variable coded as 1 if a 

vehicle is present ahead of the SV along the direction i   (0 otherwise),  qtiX  is the space 

between the SV and the vehicle ahead of SV along the direction i , and curb

qtiX  is the space 

between the SV and the curb ahead along the direction i . 

(3) the relative velocity ( qtiV ) between the SV and the vehicle ahead of it along the direction 

i , if there is a vehicle ahead. 

The parameters 2s , 3s , and 4s  capture the influence of the above three stimuli, 

respectively, on the extent of acceleration. These intent-specific parameters can be estimated 

using empirical trajectory data. The variables qtV , qtiX ,  qtiV  , and i  are observed from the 

empirical data. However, the values of a driver’s desired speed and space gap (
desV  and des

qtX

) must be specified by the analyst because they cannot be estimated from the trajectory data. In 

this study, 
desV  is assumed as 60 km/hr for all drivers, based on the speed limit of the roadway 

stretch from which trajectory data was obtained for the empirical analysis. Next, for des

qtX , we 

employed Pipes (1953)’s modified equation as below: 

 min
0.447 10

t

de

qt

qs

qX X
L

V= +


   (6.4) 

Here, minX  is the minimum gap drivers prefer to maintain with respect to a vehicle ahead 

when their vehicle is at rest in jam density situation. We adopt minX  as the length of the 

subject vehicle ( qL ). The term 
0.447 10

q

qt

L
V


 assumes that the SV needs at least qL  additional 

gap for every additional speed of 10 mph. 

Admittedly, the values for  
desV  and minX  are assumed to be the same for all drivers. 

However, these quantities may vary across drivers. To capture the average effect of such 

heterogeneity and that of any additional influences on the SV’s acceleration, a constant 1s  is 

incorporated into the acceleration model. This constant can be estimated from the empirical 

data. Note that changing the values assumed for 
desV  and minX  does not change the model, 

in terms of its fit (likelihood) to the empirical data, the interpretation or the statistical 
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significance of other parameters – only the magnitudes of the parameters 1s , 2s , 3s , and 

4s  change. Nevertheless, it is preferable that the values assumed for 
desV  and minX  reflect 

the travel conditions on the road.  

Next, the model in Eq. (6.3) for the extent of acceleration (or deceleration) for a steering 

angle i  should recognise that a vehicle may need to change its steering angle ( )qt  at t  to the 

steering angle i  at ( )t t+ . To recognise this, we use qti qt iAD  = −  to measure the change 

in steering angle from t  to ( )t t+ . Since it is more difficult to execute a larger change in the 

steering angle, one can expect that the extent of acceleration achieved in effecting a larger 

change in the steering angle would be smaller. Therefore, when the intent is to accelerate 

( or )s AL AR= , we employ a decreasing function of qtiAD  to moderate the level of 

acceleration achieved for executing qtiAD  amount of change in angular orientation. For the 

same reason, when the intent is to decelerate ( or )s DL DR=  we employ an increasing function 

of qtiAD . We explored different functional forms for the moderating functions to incorporate 

the impact of change in steering angle, and found that the following functions provided the best 

fit to the empirical data: 

 ( )

 

 

2exp
180

s ,

1 exp
180

2exp
180

  s ,

1 exp
180

qti

qti

s qti

qti

qti

AD

AL AR
AD

f AD
AD

DL DR
AD









 −  
  

   
 −  

+  
  

= 
 

 
   

 
+  

 

 (6.5) 

Finally, the expression in the square bracket of Eq. (6.3), along with its product with ( ) ,s qtif AD  

provides the acceleration along the direction i  conditional on intent s . To obtain the 

longitudinal acceleration, the expression is multiplied with ( )cos i . Further, to account for 

variation in the accelerations due to inter-driver heterogeneity in 
desV  and minX  (which are 

assumed to be same for all drivers), and any other influential factors not considered in the 

model, a stochastic term s

qti  is introduced in Eq. (6.3). This term is assumed to be normally 

distributed with zero mean and unit variance.  
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With the above assumptions, embedding Eq. (6.3) for the extent of acceleration or deceleration 

into the steering angle choice model for Eq. (6.2) results in a multinomial probit type discrete 

choice model. Further, the acceleration value conditional on the intent  , , ,s AL AR DL DR  

may be expressed as: 

 
( )

( )
( )( )

s
q t t

s s

q t t q t t j
j G

A Ma Ax
+

+ +


=  (6.6) 

6.2.2.3 Steering angle choice and acceleration models conditional on the intents  and AS DS  

Intuitively, when drivers intend to steer in the straight direction (i.e.,  ,s AS DS ), they 

would not think about choosing an “angular direction.” At the same time, they might 

unintendedly drift along a direction that is slightly left or right of the longitudinal axis. 

Therefore, unlike the acceleration-maximisation-based steering angle choice model in Eq. (6.2)

, the choice of angular direction i  conditional on intents  ,s AS DS  is modelled using a 

simple discrete choice framework with only constants in the specification. That is, the choice 

of the specific angle is not coupled with the extent of the acceleration.  

To model the extent of acceleration or deceleration ( )
s

q t t
A

+
 for intents  ,s AS DS , we use 

the same expression as in Eq. (6.3) for ( )
s

q t t
A

+
 for the chosen angular direction i .  

6.2.2.4  Steering angle choice and acceleration models conditional on the intents 

, ,  and CL CS CR  

When the driver intends to maintain a constant speed (i.e.,  , ,s CL CS CR ), there is no 

concept of acceleration maximisation or deceleration minimisation. Therefore, we specify a 

simple, constants-only discrete choice model for the steering angle choice for each of the 

intents , ,  or CL CS CR . Further, since there is no intent to accelerate or decelerate, the extent 

of intended acceleration is zero (that is, the modelled acceleration, 

( )  0 , ,s

q t t
A s CL CS CR

+
=   ), albeit the observed acceleration values may not be zero as the 

drivers unintendedly accelerate or decelerate by a small amount.  

6.2.2.5 Difference between observed and planned acceleration values: Execution error 

The acceleration values obtained from the models for ( )
s

q t t
A

+
 in the above sections (6.2.2.2 

through 6.2.2.4) may be viewed as planned acceleration values. These values are quite likely 

to be different from the executed (or, observed) acceleration values in the field (trajectory data). 
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This difference is viewed as the driver’s execution error attributable to the vehicle machine 

capabilities and the driver’s driving experience. Specifically, the execution error for any of the 

intents is expressed as: 

 ( ) ( ) ( )
s

q t t q t t q t t

s A A s J
+ + +

= −    (6.7) 

where, ( )
s

q t t


+
 is a random term representing the execution error for intent s , ( )

s

q t t
A

+
 is the 

modelled acceleration for that intent, and ( )q t t
A

+
 is the observed acceleration. 

Note that the 2D movement of the SV can potentially be constrained due to physical 

boundaries such as road edges. As a result, when the SV is at the laterally left or right extreme 

ends of the road, we constrain the choice set ( ( )
s

q t t
G

+
) for all the steering angle choice models. 

For example, it is presumed that the subject vehicle does not have an option of steering along 

3l  3( )r  when it is at the extreme left (right) end of the road. The locations of extreme ends are 

determined based on empirical data. It is observed in the data that the SVs did not choose angle 

3l  when the lateral distance between the left edge of the SV and the left edge of the road was 

less than 0.80 m. Similarly, the angle 3r  was not chosen by the SVs when the lateral distance 

between the right edge of the SV and the right edge of the road was less than 1.64 m. Hence, 

we considered the SV as being at the extreme left (right) end when the lateral distance between 

the left (right) edge of the road and the left (right) edge of the SV was less than 0.80 m (1.64 

m).  

6.2.3 Likelihood Function Formulation  

To derive the likelihood function, we mapped drivers’ manoeuvres observed from trajectory 

data (i.e., the executed acceleration and steering angle) to their intents, as shown in Figure 6.4.  

 

Figure 6.4 Mapping of drivers’ observed actions to the latent intents 
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Following this mapping, the likelihood function for the observed actions of the driver of vehicle 

q  at time ( )t t+  is written as: 

( ) ( )( ) ( ) ( ) ( ) ( )( )
 

( )

( ) ( ) ( ) ( )( )
 

( )
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 

( )

( ) ( )

1

1 2

, , , , , ,

, , ,

, , , ,  

, ,

q t t q t t

q t t

i iq q q q q
s AL AS CL CS s DL DS CL CS
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 (6.8) 

In this expression, ( ) 1q t t + =  if ( ) 0
q t t

A
+

 , otherwise ( ) 0q t t + = . ( ) ( )tq t
P s

+
 is the logit 

expression in Eq. (6.1).  

6.2.3.1 Conditional likelihood expressions ( ) ( )( ),
qq t t t t

P A i s
+ +  for different intents  

( ) ( )( )  , , , :,
t tq q t t

P DA Ai s s AL R DL R
+ +

  From Eq. (2),  
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 (6.9) 

By re-expressing some of the above terms as follows: 
s s

qtj qti

s

qtji − = , 

( ) ( ) ( )
s s s

q t t i q t t j q t t ij
a a a

+ + +
− = , and ( ) ( )

ss

qtit

s

t tq qt
  

+ +
+ = , Eq. (6.9) can be simplified as below: 

( ) ( )( ) ( ) ( ) ( )( ) ( ) ( ) ( ) ( ) ( )( ), P Ps s s s s s

qtj q

s

t t q t t iq q q t t i t tt t q t t q t t t tij q q t tt iq t
P A j Gi s A a a A a  

+ + + + + +++ + + 
= = −   =  −

 (6.10) 

We assume that s

qti  are IID normally distributed error terms with mean zero and variance one 

and ( )
s

q t t


+
 are assumed as IID normally distributed error terms with mean zero and variance 

2( )s

 . Then, ( )
s

q t t


+
 would be normally distributed with mean zero and variance ( )

2

1s

 + . As 

a result, ( ) ( ) ( )( )P s s

tq t t q t q t t i
A a

+ + +
= −  becomes a normal probability density function (pdf) as 

below: 
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 (6.11) 

To simplify the conditional likelihood expression in Eq. (6.10), we utilise a property of 

multivariate normal (MVN) distribution (Tong, 1990) that the distribution of 

( ) ,
s

q t t

s

qtji j G j i
+

    given ( ) ( ) ( )
s s

q t t q tq t t t i
A a

++  +
= − , is another MVN distribution as given 

below: 

( | ) ~ ( , ),  where ( ),  and N= = + − = −-1 -1

1 12 22 2 11 12 22 21A B b μ Ω μ μ Ω Ω b μ Ω Ω Ω Ω Ω  (6.12) 

where A , B , b , and a  are  vectors of s

qtji ,  ( )
s

tq t


+
,  ( ) ( )( )s

q t t q t t i
a a

+ +
− , and ( )

s

q t t ij
a

+
, 

respectively. Now, the conditional likelihood expression in Eq. (6.10), can be written as:   

 ( ) ( ) ( ) ( )( )P P( )
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s s s s

qtji q t t ji q q t tt q t t it
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+ + ++
 = − =  =

= 

A a B b
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 (6.13) 

where C  is an MVN random variable with a mean vector μ  and variance-covariance matrix 

Ω  as in Eq. (6.12). Pr( )C a  does not have a closed-form expression. The current study 

employs a matrix-based method for the analytic approximation of the MVN cumulative 

distribution function provided by Bhat (2018). 
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   Following Section 6.2.2.3 for intents  ,s AS DS ,  

( ) ( )( ) ( ) ( ) ( ) ( ) ( )( )  

( ) ( ) ( ) ( ) ( )( )  

( ) ( ) ( ) ( ) ( )( )  

| P ,

P ,

,

P ,

|

|

s

t t q t t t t q t t q t t qi t t

s

qtit t q t t q

s

q

t t

t tt t

q

s s

q q t t i

s s

q q q t it q t t

s AS DS

s AS DS

s AS DS

P A i s P i s A A

P i s A a

P i s A a








+

+ + + + + +

+ + +

+ + + +





=  = −

=  = − −

 =



−

 



=  

 (6.14) 

As the choice of angle i  conditional on intents  ,s AS DS  is modelled using a simple 

discrete choice framework with only constants in the specification, ( )|qtP i s  in the above 

equation takes a multinomial probit type discrete choice model form. 

( ) ( ) ( )( )Pr s s

tq t t q t q t t i
A a

+ + +
= −  is a normal pdf expressed as in Eq. (6.11).  
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 (6.15) 

Since a simple, constants-only discrete choice model is used for the steering angle choice for 

each of the intents , ,  or CL CS CR , ( ) ( )|
tq t

P i s
+

 in the above equation takes the multinomial 

probit type discrete choice model form. Note that we estimate the mean (
C ) and standard 

deviation C

  of error terms ( )
s

q t t


+
  for all  , ,s CL CS CR . ( ) ( )( )P

t t q t t

s

q
A

+ +
=  is a normal 

pdf expressed as below:  
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 (6.16) 

 

6.3 EMPIRICAL MODEL 

The above described framework is applied to develop an empirical model of motorised two-

wheeler driver behaviour using a vehicle trajectory dataset from an urban arterial road in 

Chennai, India (2015). In this section, we first describe the traffic environment variables used 

to explain the driver behaviour and then present the empirical findings.  

6.3.1 Traffic Environmental Variables in the Latent Class Model for Higher-Level Intents  

It is assumed that the subject vehicle (SV)’s higher-level decisions (intents) are influenced by 

multiple vehicles around the subject vehicle. Following the analysis done in Chapter 3, the 

MVA effect is incorporated using the concept of an influence zone (see Figure 6.5), where 

vehicles within the influence zone around an SV are assumed to influence its behaviour. In 

Figure 6.5, the subject vehicle (SV) is in blue colour.  
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Figure 6.5 Structure of a rectangular influence zone around a subject vehicle 

As described in Chapter 3, the influence zone around the SV is divided into five 

compartments. The labelling of the compartments is according to the position of the 

compartment with respect to the SV. Space directly ahead of the subject vehicle is called the 

middle front (MF) compartment, the space ahead to the left of the subject vehicle is labelled 

the left front (LF) compartment (similarly, the space ahead to the right of the subject vehicle is 

called the RF compartment), and the adjacent space to the left of the subject vehicle is called 

the left side (LS) compartment (similarly adjacent space to the right of the subject vehicle is 

called the RS compartment). The vehicles in these compartments are labelled as in the legend 

of Figure 6.5. Specifically, vehicles in the influence zone other than the SV are assigned a 

number based on their proximity to the SV and their compartment. For example, the closest 

vehicle in the MF compartment is labelled MF1. Next, traffic environment variables (such as 

space gaps and relative speeds) are calculated with respect to each of these surrounding 

vehicles for use in the latent class model.  

6.3.2 Calculation of Attributes Used in the Lower-Level Model for the Extent of Acceleration 

6.3.2.1 Spacing ( )qtiX  calculation 

The distance between the subject vehicle (SV) and the lead vehicle (LV) along an angular 

direction i , measured along that direction, is considered as the space gap qtiX  for that 

direction. To understand this, consider that the subject vehicle (SV) has three LVs, as in Figure 
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6.6. The points on LV that are at minimum distance from the SV are identified for each angle 

(only if the LV is present in that angle). Then the distances between these points and the subject 

vehicle are calculated. If no LV is present along a given angular direction i , then the distance 

up to the curb is considered as spacing for that direction and represented as 
curb

qtiX  in Eq. (6.3)

. Note that, for ease of presentation, the subscript qt  is suppressed when spacing is denoted in 

Figure 6.6. 

 

Figure 6.6 Spacing ( )qtiX  between subject vehicle (SV) and lead vehicle (LV) along 

direction i  

6.3.2.2 Relative velocity ( )qtiV  calculation  

Relative velocity between the SV and an LV along the direction i  is defined as the difference 

between the LV velocity and the SV velocity, after projecting both velocities along that 

direction. Figure 6.7 depicts the calculation of relative velocity. In this figure, SVV  is the 

velocity vector of the SV calculated using the observed longitudinal speed ,( )SV XV  and lateral 

speed ,( )SV YV . The angle of SVV  with respect to the longitudinal axis is 
,1

,

tan
SV Y

SV

SV X

V

V
 −

 
=   

 
. 

The projection of SVV  along the direction i  is ( )cos | |SV SV iV  − . Similarly, the projection of 

the velocity of LV along i  is ( )cos | |LV LV iV  − . The relative velocity between the two 

vehicles along the direction i  is the difference between the projections of LV velocity and the 

SV velocity along i , as below: 
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 ( ) ( )cos | | cos | |i LV LV i SV SV iV V V    = − − −  (6.17) 

Note that the subscript qt  is suppressed in the above equation and in Figure 6.7 for ease of 

presentation. In Figure 6.7, it is assumed that the LV is present ahead of the SV along the 

direction i . Hence, iV  is only calculated when the LV is present along i . The same procedure 

is followed for all  1 2 3 1 2 3, , , , ,i I l l l r r r = . 

 

Figure 6.7 Speeds of SV and LV along the direction i  

6.4 EMPIRICAL MODEL RESULTS AND DISCUSSION 

6.4.1 Estimation Results of Latent Class Model for Higher-level Intents 

Table 6.1 shows the estimation results of the latent class model for drivers’ higher-level intents. 

Recall that we had identified nine possible intents ( s ). To avoid proliferation of parameters, 

the effect of traffic environment variables was not specified separately in each intent. Instead, 

a dimension-wise specification was employed, where the effect of each variable was introduced 

separately for the acceleration intents and the steering direction intents. To specify the variable 

effects on acceleration intents, maintaining a constant speed was considered the base category. 

For the variable effects on steering direction intents, steering in the straight (longitudinal) 

direction was considered the base category. Further, to better interpret some of the empirical 

model results, it is worth noting here that vehicular traffic in India follows a “keep left” driving 

policy, where the left side of the travel direction is the curb side, and the right side of the travel 

direction is the median side (if the road is median separated). 
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The parameter estimates of SV’s longitudinal speed variable suggest, as expected, that 

the drivers of vehicles travelling at slower speeds are more (less) likely to intend to accelerate 

(decelerate) than drivers travelling at faster speeds. In the context of steering direction, 

motorised two-wheeler drivers in HD traffic conditions, when travelling at higher longitudinal 

speeds, are more (less) likely to intend to steer left (right) of the longitudinal direction. This 

finding can be explained based on two aspects of two-wheeler driver behaviour typical to 

Indian traffic conditions. First, two-wheelers on Indian roads tend to travel on the left side of 

the road, segregated from larger vehicles such as cars that travel on the right side (Transport 

Department, Government of India, 1989). Second, since a two-wheeler typically travels on the 

left side of the road, its manoeuvre to overtake a slow-moving vehicle ahead involves the 

following steps: (1) steer to the right of the longitudinal direction (after finding a gap to do so), 

(2) speed up (while steering to the right and while steering back to the longitudinal direction) 

to get past the slow-moving vehicle, and (3) steer to the left to get back to the left side of the 

road (Transport Department, Government of India, 1989). Therefore, two-wheelers at high 

speeds are more likely (than slower two-wheelers) to be those that are steering to the left of the 

road to complete an overtaking manoeuvre. Besides, two-wheelers are more likely to mitigate 

the heightened risk of higher speeds by moving to the left side of the road where there are more 

vehicles of the same type. Further, vehicles at higher speeds have less incentive (when 

compared to those at slower speeds) to steer right to initiate an overtaking manoeuvre.   

Next, we turn to the influence of traffic environment variables in the MF compartment. 

The space gap with respect to the MF1 vehicle shows a strong negative influence on the intent 

to decelerate. However, there is no significant differential effect of this space gap between the 

intent to accelerate or to remain in same speed. Furthermore, space gap with respect to MF1 

does not show a significant influence on the steering direction intents. On the other hand, the 

relative speed with respect to MF1 appears to be a stronger stimulus (than the space gap), with 

a significant influence on the intent to accelerate (+ve influence), the intent to decelerate (-ve 

influence), and the intent to steer right of the longitudinal direction (-ve influence). The 

influences of relative speed on SV’s likelihood of accelerating or decelerating are well 

documented in the literature (Koutsopoulos and Farah, 2012), albeit the influence on the 

steering direction has not been well explored earlier. Intuitively, an SV with an LV 

longitudinally ahead of it at a higher speed (than the SV) has little motivation to steer in the 

right direction. In contrast, if the MF1 is driving slower than the subject vehicle, the SV’s driver 

will want to overtake the lead vehicle; hence the driver will be more inclined to steer right 
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rather than move in the longitudinal direction. This result corroborates earlier findings in the 

literature (Chandra and Shukla, 2012; Asaithambi and Shravani, 2017) that in HD traffic 

conditions of Indian cities, when drivers have the option to go past the slow-moving lead 

vehicle, they tend to overtake it from the right side. 

In addition to the first LV (MF1) in the MF compartment, the empirical results suggest 

an influence of the second LV (MF2) as well. Specifically, the presence of MF2 (along with 

MF1) might make the SV driver feel constrained and motivate them to overtake by steering to 

the right of the longitudinal direction. At the same time, presence of a large space gap between 

SV and MF2 would reduce such an urge. The influence of relative speed with respect to MF2 

on the SV driver’s intent to accelerate or decelerate is similar to that of MF1, though the 

influence of MF2 is weaker than that of MF1. While earlier studies (e.g., Hoogendoorn and 

Ossen, 2006; Hoogendoorn et al., 2006; and Zhang, 2014) recognize that the relative influences 

of MF2 and MF1 on the longitudinal acceleration behaviour of vehicles, we are not aware of 

studies that highlight the influence of MF2 on a subject vehicle’s 2D movement.  

The above-discussed influences of MF2 offer evidence of the MVA effect on drivers’ 

higher-level intents. Along the same lines, vehicles in the LF, RF, LS, and RS compartments 

have an influence too. In this context, the absence of other vehicles in the RF and RS 

compartments shows a greater likelihood of drivers’ intent to steer to the right of the 

longitudinal direction – perhaps because of the opportunity provided by the empty space on the 

right side of the SV to possibly overtake an LV in the MF compartment (Chandra and Shukla, 

2012; Asaithambi and Shravani, 2017). Similarly, the absence of vehicles in the LF and LS 

compartments seem to increase drivers’ intent to steer to the left. By the same token, the 

presence of a vehicle in these compartments would reduce the intent to steer left. However, if 

a vehicle is present in the LF compartment, a high space gap between it and the SV would 

again increase the intent to steer left, ceteris paribus. Further, if the LF1 moves faster than the 

SV, it seems to reduce the intent of the SV’s driver to decelerate or to steer in the right direction. 

Interestingly, however, the space gap with respect to the LV labelled RF1 does not have an 

influence on any of the intents. At the same time, the relative speed between the SV and RF1 

influences the driver’s intents along both the acceleration and steering direction dimensions. 

Finally, the lateral space available to the left of the SV – either in the form of space between 

SV and LS1 or between SV and the left edge of the road – influences the driver’s intents. 

Specifically, SV drivers show higher intents to accelerate and to steer left when they find large 

lateral space gaps to their left side. This is consistent with our expectations since, in HD traffic 
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scenarios (especially in the Indian driving context) two-wheelers prefer to be on the left side 

of the road. Overall, the latent class model suggests behaviourally plausible influences of 

various surrounding vehicles on the SV driver’s intents, besides highlighting the MVA effect.  

In addition, the empirical results highlight driving behaviours typical to motorized two-

wheelers in HD traffic streams in Indian cities. 

6.4.2 Models for Lower-Level Decisions (Steering Angle Choice and Acceleration) 

Conditional on Higher-Level Intents  

Table 6.2 reports the estimation results of the models for lower-level decisions – choice of the 

specific steering angle and the extent of acceleration or deceleration – conditional on the 

higher-level intents. Several interesting behavioural patterns surface from these models and 

their comparison with the findings of the earlier-discussed model for higher-level intents. First, 

the gap between the desired speed and the SV speed appears to be the primary variable 

influencing the lower-level decisions once the higher-level intents are made (that too only when 

the intents are AL, DL, and DR). Second, the only other traffic environment variable that shows 

an influence on the lower-level decisions is the relative velocity between the SV and the lead 

vehicle – that too, only when the intent is AR (i.e., accelerate and steer right of longitudinal 

direction). Third, space gaps do not show significant influence on lower-level decisions once 

higher-level intents are made (in which space gaps did show a strong influence). In fact, we 

see that no traffic environment variable has a significant influence on the extent of acceleration 

(deceleration) when the drivers’ intent is AS (DS). All these results suggest that the influence 

of traffic environment variables on lower-level, tactical decisions is not as strong as that found 

on higher-level decisions (intents). A plausible explanation for such results is that drivers invest 

greater cognitive resources in making their higher-level, strategic intents than what they invest 

in making the lower-level, tactical decisions. Once they make their higher-level intents based 

on a very careful evaluation of the traffic environment, it may be that they make the lower-

level decisions based on their driving experience as opposed to an equally careful evaluation 

of the traffic environment.  

 The influence of the relative velocity variable conditional on the AR intent is perhaps 

because the SV is attempting to overtake the vehicle ahead. In Indian traffic conditions, drivers 

overtake from the right side of vehicles ahead of them, and existing literature suggests that 

relative velocity is an essential factor in overtaking manoeuvres (Chandra and Shukla, 2012; 

Asaithambi and Shravani, 2017).  
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Note that we estimated constants ( 1s ) for all steering angle choice alternatives in the models 

specific to intents ,  , ,AL AR DL  and DR . In fact, we constrained the constants to be the same 

for all steering angle alternatives for a given intent. This is unlike the usual discrete choice 

models where the constant for at least one alternative should be normalised for identification 

purposes. We estimated the same constant in all alternatives because a unified model of Eq. 

(2), combined with Eq. (3), is used for both the choice of the steering angle (from a set of 

discrete alternatives) and the extent of acceleration or deceleration (a continuous value). In this 

model, the observed steering angle choice informs the estimation of coefficients on the traffic 

environment variables along each angular direction, while the observed acceleration value 

informs the estimation of the constant. Such a constant helps in fixing the location (on the real 

line) of the extent of acceleration obtained from Eq. (6.3) for intents ,  , ,AL AR DL  and DR . 

In the lower-level decision models for intents  and AS DS , the reader will note two sets 

of constants – one in the steering angle choice model and another in the model for the extent 

of acceleration. This is because for these intents, as discussed in Section 6.2.2.3, the choice of 

the steering angle is not coupled with the extent of acceleration. The steering angle is modelled 

using a simple, constants only discrete choice model. The positive value of the constants 

estimated specific to angular directions 1l  and 1r   in the model for DS  intent, with the base 

categories 2l  and 2r , suggest that drivers are more likely to steer along the 1l  or 1r  directions 

(than the 2l  or 2r directions), when their intent was to keep straight. Next, we turn to the 

constants in Eq. (3) used for the extent of acceleration in the models for AS  and DS  intents. 

These constants indicate that the expected acceleration (deceleration) value when the intent is 

 ( )AS DS  is 1.039 m/s2 (-1.123 m/s2). 

In the lower-level decision models for intents ,  CS,CL  and CR , as discussed in 

Section 6.2.2.4, the expected value of acceleration is zero (because the driver intended to be in 

a constant speed). Therefore, a simple, constants only discrete choice model is used for the 

steering angle choice. 
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Table 6.1 Estimation results of the latent class model for higher-level decisions (intents) 

Traffic environment variable 
Acceleration intents Steering direction intents 

Accelerate ( )A  Decelerate ( )D  Steer left ( )L  Steer right ( )R  

Constant 2.976 (9.05) -5.816 (-13.98) -4.222 (-8.48) 2.147 (5.39) 

Speed of the subject vehicle (m/s) -0.520 (-15.83) 0.427 (12.45) 0.056 (2.05) -0.344 (-9.45) 

Traffic environment variables with respect to vehicles in MF compartment     

Space gap in longitudinal direction with respect to MF1 (m) -- -0.037 (-5.20) -- -- 

Relative speed in longitudinal direction with respect to MF1 (m/s) 0.166 (8.32) -0.080 (-3.67) -- -0.142 (-5.72) 

Subject vehicle has two or more lead vehicles in MF compartment -- -- -- 0.789 (1.95) 

Space gap in longitudinal direction with respect to MF2 (m) -- -- -- -0.032 (-1.74) 

Relative speed in longitudinal direction with respect to MF2 (m/s) 0.122 (3.48) -0.037 (-1.29) -- -- 

Subject vehicle does not have lead vehicles in RF and RS compartments -- -- -- 0.179 (1.38) 

Subject vehicle does not have lead vehicles in LF and LS compartments -- -- 0.912 (4.54) -- 

Traffic environment variables with respect to vehicles in LF and RF compartments     

Space gap in longitudinal direction with respect to LF1 (m) -- -- 0.044 (6.73) -- 

Relative speed in longitudinal direction with respect to LF1 (m/s) -- -0.066 (-3.23) -- -0.056 (-2.40) 

Space gap in longitudinal direction with respect to RF1 (m) -- -- -- -- 

Relative speed in longitudinal direction with respect to RF1 (m/s) 0.057 (3.22) -0.060 (-3.00) -0.046 (-1.91) 0.024 (1.05) 

Traffic environment variables with respect to vehicles in LS and RS compartments     

Space gap in lateral direction with respect to LS1 (m) 0.182 (4.99) -- -- -- 

Relative speed in lateral direction with respect to LS1 (m/s) -- -- -- -- 

Space gap in lateral direction with respect to RS1 (m) -- -- -- -- 

Relative speed in lateral direction with respect to RS1 (m/s) -- -- -- -- 

Space gap between left edge of the SV and left edge of the road (m) 0.132 (5.19) -0.281 (-10.39) 0.118 (3.24) -- 

-- the corresponding parameter was dropped from the specification as it was found to be statistically insignificant
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Table 6.2 Estimation results of the models for lower-level decisions 

Variable  
Estimates  

(t-stats) 
Variable  

Estimates  

(t-stats) 

When AL is higher-level intent (steering angle alternatives: 
1 2 3{ , , }i l l l )  When DL is higher-level intent (steering angle alternatives: 

1 2 3{ , , }i l l l )  

Steering angle choice and acceleration model   Steering angle choice and acceleration model   

Constants (in all alternatives) 0.248 (0.68) Constant (in all alternatives) -2.769 (-29.48) 

Difference between desired speed and speed of the subject vehicle (m/s)  0.085 (1.95) Difference between desired speed and speed of the subject vehicle (m/s)  0.113 (4.32) 

Difference between available space gap and desired space gap (m) -- Difference between available space gap and desired space gap (m) -- 

Relative velocity with respect to lead vehicle (m/s) -- Relative velocity with respect lead vehicle (m/s) -- 

When AS is higher-level intent (steering angle options:
1 2 1 2{ , , , }i l l r r )   When DS is higher-level intent (steering angle options:

1 2 1 2{ , , , }i l l r r )  

Steering angle choice model  Steering angle choice model  

Constants specific to 
1l  and 

1r (
2l  and 

2r  are base alternatives) -0.037 (-0.57) Constants specific to 
1l  and 

1r  (
2l  and 

2r  are base alternatives) 0.217 (3.04) 

Acceleration model   Acceleration model   

Constant 1.039 (29.69) Constant -1.123 (-27.73) 

Difference between desired speed and speed of the subject vehicle (m/s)  -- Difference between desired speed and speed of the subject vehicle (m/s)  -- 

Difference between available space gap and desired space gap (m) -- Difference between available space gap and desired space gap (m) -- 

Relative velocity with respect to lead vehicle (m/s) -- Relative velocity with respect lead vehicle (m/s) -- 

When AR is higher-level intent (steering angle alternatives: 
1 2 3{ , , }i r r r )    When DR is higher-level intent (steering angle alternatives: 

1 2 3{ , , }i r r r )  

Steering angle choice and acceleration model   Steering angle choice and acceleration model   

Constants (in all alternatives) 0.599 (4.44) Constants (in all alternatives) -2.885 (-18.38) 

Difference between desired speed and speed of the subject vehicle (m/s)  -- Difference between desired speed and speed of the subject vehicle (m/s)  0.147 (3.78) 

Difference between available space gap and desired space gap (m) -- Difference between available space gap and desired space gap (m) -- 

Relative velocity with respect to lead vehicle (m/s) 0.079 (4.08) Relative velocity with respect lead vehicle (m/s) -- 

When CL is higher-level intent (steering angle alternatives: 
1 2 3{ , , }i l l l )  

  
Steering angle choice model   

  
Constants specific to 

1l  and 
2l (

3l  is base alternative) 0.650 (6.45)   
When CS is higher-level intent (steering angle options:

1 2 1 2{ , , , }i l l r r )  
  

Steering angle choice model   
  

Constants specific to 
1l  and 

1r  (
2l  and 

2r  are base alternatives) 0.493 (14.73)   
When CR is higher-level intent (steering angle alternatives: 

1 2 3{ , , }i r r r )    
  

Steering angle choice model  
  

Constants specific to 
1r  and 

2r (
3r  is base alternative) 0.589 (5.59)   

Scale parameters of execution error terms ( )
s

q t t


+    Mean parameters of execution error terms ( )
s

q t t


+    

AL

  0.385 (1.81) 
A  when the intent is to accelerate ( , ,AL AS AR ) 0.00 (Fixed) 

AS

  0.447 (17.43) 
D  when the intent is to decelerate ( , ,DL DS DR ) 0.00 (Fixed) 

AR

  0.274 (2.15) 
C  when the intent is to be in constant speed ( , ,CL CS CR ) -0.062 (-6.00) 

CL CS CR C

      = = =  0.453 (58.04)   

DL

  0.345 (2.09)   

DS

  0.472 (16.87)   

DR

  0.372 (1.29)   

Number of parameters 52 

Log-likelihood at convergence  -20213.57 

-- the corresponding parameter was dropped from the specification as it was found to be statistically insignificant 
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6.4.3 Parameters of the Execution Error Term 

As discussed in Section 6.2.2.5, the proposed framework recognises execution error ( ( )
s

q t t


+
) 

as the difference between executed acceleration and modelled acceleration. In all lower-level 

decision models conditional on the higher-level intents being acceleration or deceleration, the 

scale parameters are estimated while fixing the mean parameters (see the last set of rows in 

Table 6.2). If the drivers intended to remain at a constant speed, both the scale and mean 

parameters are estimated for the execution error term. The mean parameter indicates a 

systematic bias away from zero acceleration when the drivers intended to remain at constant 

speed. The estimate of this mean parameter takes a value of -0.06, which implies that even if 

the drivers intended to remain at a constant speed, their execution is biased toward an average 

deceleration of -0.06 m/s2. This may be because drivers are conservative and prefer to err on 

the side of safety.  

6.4.4 Model Comparison 

To evaluate the benefits of assuming a two-step decision process, where drivers’ higher-level 

intents precede their tactical decisions of the specific steering angle and the extent of 

acceleration or deceleration, we estimated three reduced-form models that do not have a latent 

class layer for the intents. The first of these reduced-form models (labelled RM1), as shown in 

Figure 6.8(a), treats the observed driving decisions directly as a result of steering angle choice 

and the extent of acceleration or deceleration. This model involves a multinomial probit-based 

discrete choice framework for the steering angle choice (from the directions 1 2 3 1 2 3, , , , ,l l l r r r ) 

and a regression model for the extent of acceleration or deceleration considering the effect of 

the immediate lead vehicle. The second reduced-form model (RM2) formulates a two-stage 

procedure, albeit without a latent class framework, as shown in Figure 6.8(b). Specifically, the 

decisions to accelerate or decelerate (there is no decision to remain at constant speed) and the 

decisions to steer left or right (without an option to keep straight) are represented as first-stage 

decisions. In the second stage, the choice of the specific angle and the extent of acceleration 

are modelled separately conditional on the first-stage decisions. The third reduced-form model 

(RM3) formulates another multi-stage decision process, as shown in Figure 6.8(c) (again 

without the latent class framework). Similar to RM2, in this formulation, the decisions to 

accelerate or decelerate and the decisions to steer left or right are viewed as the first stage 

decisions. Conditional on these decisions, the choice of the specific angle and the extent of 

acceleration are modelled separately. 
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Figure 6.8 Structure of the reduced-form models and the proposed model 
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The main difference between the reduced-form models and the proposed model is that 

the latter uses a latent class framework to consider the possibility that the drivers may have 

intended to be at a constant speed and/or to keep straight. Besides, the choice of the specific 

steering angle is based on a defensible theory that drivers choose an angle that allows them to 

proceed at maximum (minimum) possible acceleration (deceleration) if they had intended to 

accelerate (decelerate). 

Table 6.3 presents the goodness-of-fit metrics of all the estimated models to the 

estimation data. Since the reduced-form models are not special cases of the proposed model, 

the typically used likelihood ratio test cannot be used for comparing the models. Hence, 

Bayesian Information Criterion (BIC) and Akaike Information Criterion (AIC) metrics are 

employed to compare the data fit of different models. As can be observed from the AIC and 

BIC values in the table, the proposed model outperforms all the three reduced form models in 

terms of model fit. These results suggest the importance of the latent class framework for 

considering the possibility of intents unobservable from trajectory datasets. 

Table 6.3 Model comparison 
Goodness of fit 

measures  
Proposed model  

Reduced-form 

model (RM) 1  

Reduced-form 

model (RM) 2  

Reduced-form 

model (RM) 3  

No. of cases  7748 7748 7748 7748 

No. of parameters 52 16 41 52 

Log-likelihood  -20213.571 -20665.91 -23242.45 -23252.51 

AIC value  40535.14 41363.82 46566.90 46609.02 

BIC value  40910.72 41475.10 46852.06 46970.69 

6.5 CONCLUSIONS  

This chapter formulates a latent class-based driving behaviour framework that considers 

drivers’ intents for modelling vehicles’ 2D movements while recognizing the MVA effect on 

these movements in HD traffic conditions. Specifically, five extensions are proposed to a 

typical stimulus-response based driving behaviour framework. First, the subject vehicle’s two-

dimensional movements are represented as a combination of the angular direction of movement 

with respect to the longitudinal direction and the magnitude of acceleration or deceleration 

along the angle. Second, a latent class framework is used to model the driver’s intents (latent 

to the analyst) in two dimensions: (a) the intent to accelerate, decelerate, or maintain a constant 

speed, and (b) the intent to steer left, right, or straight with respect to the longitudinal axis. 
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Third, the MVA effect is accommodated to recognize that drivers consider stimuli from 

multiple vehicles in their vicinity. Fourth, a multi-stimuli model of acceleration is formulated 

based on the assumption that drivers choose an angular direction of movement that allows them 

to move with the highest (lowest) possible longitudinal acceleration (deceleration) if they 

intend to accelerate (decelerate). Fifth, drivers’ execution errors are modelled as the difference 

between their planned acceleration and executed acceleration. 

The proposed framework analyses the driver’s intents and subject vehicles’ two-

dimensional movements using a two-stage model system that comprises the following 

components: (a) a latent class component for analysing drivers’ higher-level decisions or 

intents, and (b) intent-specific model components (class-specific models) for analysing drivers’ 

lower-level decisions such as the specific steering angular direction and the extent of 

acceleration or deceleration. Properties of the multivariate normal distribution are employed to 

derive the likelihood function for such a model system. An empirical application of the 

proposed framework is presented for analysing driver behaviour of motorised two-wheelers 

using an HD traffic conditions trajectory dataset from Chennai, India. 

The empirical results suggest that a driver’s higher-level decisions (intents) are not only 

affected by the immediate lead vehicle but also by vehicles on the left front, right front, left 

side, and right side of the driver’s vehicle, indicating the importance of considering the MVA 

effect. The findings also show that the microscopic traffic environment factors have a greater 

impact on drivers’ higher-level intents than on their lower-level decisions. Probably, drivers 

invest greater cognitive resources in making their higher-level, strategic intents than what they 

invest in making the lower-level, tactical decisions. Furthermore, the empirical results offer 

insights into the driving behaviour observed in Indian traffic streams. For example, when 

drivers have an opportunity to pass the slow-moving lead vehicle, they often do so on the right 

side.  
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CHAPTER 7 MACROSCOPIC TRAFFIC FLOW PROPERTIES OF THE DRIVER 

BEHAVIOUR MODELS DEVELOPED IN THIS DISSERTATION 

Abstract 

In this chapter, we examine the driver behaviour models developed in this dissertation for their 

ability to reflect the typically observed fundamental relationships between macroscopic traffic 

flow variables (i.e., flow, density, and space mean speed of traffic streams). To do so, using the 

proposed driver behaviour models, we develop a traffic simulator for simulating 

heterogeneous, disorderly (HD) traffic streams. Specifically, we focus on simulating the 

vehicular movements of cars and motorised two-wheelers. The longitudinal movements of cars 

are simulated using the discrete-continuous multi-vehicle anticipation model developed in 

Chapter 3. In addition, the two-dimensional, multi-vehicle anticipation-based latent class 

framework developed in Chapter 6 is employed to simulate the two-dimensional movement of 

motorised two-wheelers. Next, Edie’s generalised definitions are applied to the simulated 

trajectories of the vehicles to estimate the speed, flow, and density of the resulting traffic 

streams. Subsequently, the pairwise relationships between these variables are examined. It is 

observed from this analysis that the patterns in the pairwise relationships from the simulated 

data are similar to those that are typically observed in the real world. For instance, low-density 

values are related to higher speeds and lower flow rates. Similarly, it is observed that when 

density increases, flow increases up to a maximum value and then decreases. Furthermore, we 

do not observe inconsistencies in the typical speed–density, speed–flow, and flow–density 

relationships. All these observations suggest that the developed driver behaviour models in this 

dissertation are able to reflect the typically observed relationships between macroscopic traffic 

flow variables. 
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7.1 INTRODUCTION 

The previous chapters focused on the development of driver behaviour models. In this chapter, 

the developed models are examined for their capability to depict the macroscopic properties of 

traffic flow.  

The macroscopic approach describes the aggregate behaviour of traffic streams using 

variables such as flow, density, and space mean speed of the streams. The macroscopic 

properties of traffic flow can be expressed as relationships between these variables. For 

example, the Greenshields model’s assumption of a linear relation between speed and density 

is a macroscopic property. The variables flow ( )q , density ( )k , and space mean speed ( )u  

are called the fundamental traffic flow variables since they are the primary macroscopic 

descriptors of traffic flow. The following fundamental relationship between these variables is 

used in combination with an assumed relation between speed and density. 

 q k u=   (7.1) 

Furthermore, fundamental diagrams are used to describe the relationship between these 

variables. Figure 7.1, for example, shows fundamental diagrams of speed–density, speed–flow, 

and flow–density reported by Chakroborty and Das (2017) using empirical data from an 

uninterrupted traffic stream on an urban road section. Each plot in Figure 7.1 depicts a pairwise 

relationship between speed, flow, and density. Specifically, the top-left plot suggests that speed 

decreases as density increases. The intercept on the y-axis (i.e., speed axis) represents a low-

density situation where the driver may drive at the desired speed without being blocked by 

slow-moving vehicles. On the other hand, the intercept on the x-axis (i.e., density axis) 

represents the stop-and-go condition scenario where the road is jammed, and the speeds of the 

vehicles are near zero. The top-right plot between flow and speed suggests that the flow is zero 

either because the road is nearly empty with a few vehicles moving at free-flow speed, or the 

road is jammed so that vehicles present on the road cannot move. The bottom-left plot shows 

a relationship between flow and density. A parabolic curve may be used to represent this 

relationship when the speed-density relationship is linear. As expected, starting from the origin 

(i.e., 0k = , 0q = ), flow increases as density increases. This trend continues until the flow 

peaks. After this point, the flow begins to drop as density continues to increase, and the flow 

becomes zero when the density reaches jam density. Note that apart from the parabolic shaped 

fundamental diagram presented in the bottom-left of Figure 7.1, the triangular Newell-Daganzo 

flux function fundamental diagram (Gordon F Newell, 1993; Daganzo, 1995) is also widely 
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studied in the literature. This flux function is a piecewise linear function of the density with 

different slopes in the free-flow and congestion regions. 

Among the three pairwise relationships between flow, density, and speed, the essential 

relationship is between speed and density, and the other relationships are implied (Chakroborty 

and Das, 2017). Once speed and density are related, the other relationships become implied 

because of the fundamental relation of traffic flow described in Eq. (7.1).  

A realistic driver behaviour model should be capable of reflecting the macroscopic 

properties of traffic flow (Brackstone and McDonald, 1999). Therefore, newly developed 

driver behaviour models are often tested for their capability to reflect the typically observed 

fundamental relationships between macroscopic traffic flow variables (flow, density, and space 

mean speed). The natural next question is how to obtain the macroscopic traffic flow variables 

using a microscopic driver behaviour model? The answer is by aggregating the individual 

microscopic driver behaviour. The aggregation can be done analytically or by simulating 

vehicle trajectories. Here, we adopt the simulation approach since it provides more flexibility 

and ease in developing the road environment (for example, geometric features of the roadway 

section, installing traffic signals, etc.) for which the fundamental diagrams are obtained, 

thereby assisting in examining the model in a wide variety of scenarios. Therefore, using the 

proposed driver behaviour models, we developed a traffic simulator for simulating 

heterogeneous, disorderly (HD) traffic streams. Another reason for using simulation is that the 

proposed driver behaviour models may not lend themselves to the analytical exploration of the 

macroscopic traffic flow properties. 
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Figure 7.1 Typical plots of (a) speed–density, (b) speed–flow, and (c) flow–density 

relationships for an uninterrupted traffic stream (Source: Chakroborty and Das, 2017)  

The remainder of the chapter is organised in the following manner. Section 7.2 describes the 

traffic simulator developed to simulate HD traffic streams. Section 7.3 presents macroscopic 

traffic flow properties of the driver behaviour models developed in this dissertation.   

7.2 DESCRIPTION OF THE DEVELOPED TRAFFIC SIMULATOR  

MATLAB – a multi-paradigm programming language – is employed for building the simulator 

in this dissertation. The developed simulator has three components – 1) agents, 2) traffic 

environment, and 3) user interface. The following subsections go over each of the components 

and their specifications that were used in this study. 

7.2.1 Agents 

Autonomous decision-making entities in agent-based modelling are called agents (Bonabeau, 

2002). Each agent individually assesses its situation and makes decisions based on a set of rules 

appropriate for the system they are a part of. This study views different vehicles and traffic 

stream as agents and system, respectively. The traffic simulator developed in this  

 consists of two types of agents – cars and motorised two-wheelers. The specifications (physical 

and operational characteristics) of these agents are provided in Table 7.1.  
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Table 7.1 Parameters for cars and motorised two-wheelers 

Parameter Cars Motorised two-wheelers 

Dimension length = 4.2 m 

width = 1.7 m 

length = 1.8 m 

width = 0.6 m 

Desired speed (assumed) 16.67 m/s i.e., 60.00 km/hr 16.67 m/s i.e., 60.00 km/hr 

 

To simulate the movements of agents, we used driver behaviour models developed in 

this dissertation (Chapter 3 and Chapter 6). The procedures for simulating the movements of 

agents are outlined below. 

7.2.1.1 Simulation of cars’ movements  

The longitudinal movement of cars is simulated using the model proposed in Chapter 3. The 

following procedure was followed. 

1. Simulate the discrete decisions: To simulate discrete decisions of acceleration, 

deceleration, or maintain same speed; we used a three-step approach: 

(1a) Calculate the probability of each possible discrete choice decision ( , ,i a d s= ) using 

the following multinomial logit expression. 

 
( )
( )

exp
; , ,

exp

T

i qi

qi T

j qj

j

x
P i a d s

x




= =


 (7.2) 

(1b) Use the above calculated discrete choice probabilities to simulate the discrete 

decision of acceleration ( i a= ), deceleration ( i d= ), or maintain constant speed 

( )i s= . This can be done by drawing a pseudo-random number from a uniform [0,1] 

distribution and seeing where the draw falls in the cumulative probability space of the 

discrete choices ( , , ).i a d s=  

2. For a given simulated discrete decision of acceleration or deceleration ( ,i a d= ), 

simulate the corresponding continuous decision (acceleration and deceleration) values. 

To do so, compute the conditional expected value of the corresponding continuous 

decision (i.e., extent of acceleration or extent of deceleration) using the following 

expression:  
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 ( ) ( )( )| | ; ,
i

i

U

qi qi qi qi

L

E f m i f m i m dm i a d  = =
    (7.3) 

where, ( )|qif m i  is the conditional density of the corresponding continuous decision 

(acceleration and deceleration) and takes the following expression, and all other terms 

are defined in Chapter 3: 
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 (7.4) 

3. Update the longitudinal position of the vehicle using the acceleration as ( )|qiE f m i 
 

 

and specified update time.  

7.2.1.2 Simulation of motorised two-wheelers’ movements  

The model proposed in Chapter 6 is used to simulate the two-dimensional movement of two-

wheelers. The following procedure was followed to do so.  

1. Simulate driver’s intents latent to the analyst: Calculate the probability of each possible 

intent using the following logit expression.  
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x


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

 (7.5) 

Use the above calculated probabilities to simulate the intents. This can be done by 

drawing a pseudo-random number from a uniform [0,1] distribution and seeing where 

the draw falls in the cumulative probability space of the latent intents.  

2. Simulate radial cone choice: For a given simulated latent intent, simulate the 

corresponding latent-intent specific radial cone choice. To perform this, predict the 

acceleration or deceleration on each radial cone using the following expression:  

( ) ( ) ( ) ( ) ( ) ( )( )1 2 3 4cos 1 sdes des

qti

s des curb

i qti s s qt s i qti i qti s i qti qtiq t tii qt
A X Xf AD V V X X V        

+
  =  + − +  − + −  + −  +

  
 (7.6) 

where, 
s

qti  are normally distributed error terms with zero mean and unit variance. The 

radial cone choice would be the cone that gives 
( )( )max s

q t t i
A

+
.   

3. To simulate the continuous decision (extent of acceleration or deceleration): 

( )( )s

q t t i
Max A

+
 is the driver’s intended acceleration value. However, as discussed in 
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Chapter 6, the actual executed acceleration value is likely to differ from what the driver 

intended due to vehicle capabilities, drivers’ driving expertise, machine error, and other 

unobserved factors and this difference is labelled as the execution error. Hence, to 

calculate the actual extent of acceleration or deceleration, simulate a normally 

distributed error term (will be used as an execution error) with zero mean and 
2

s  

variance and add it to 
( )( )max s

q t t i
A

+
.  

4. Update the position of the vehicle using the predicted radial cone and the computed 

extent of acceleration/deceleration for the specified update time. 

7.2.2 Environment 

A traffic simulator environment is a virtual world where the agents are created, run and 

displayed. The user defines the length of the road and the number of lanes based on the different 

traffic scenarios being examined. In this study, the width of each lane is fixed to 3.5 m, and 

only one-way movements are simulated. Different congestion levels on the road can be 

simulated by placing a traffic signal at the end of the road section with cycle length as input 

from the user. Further, the user can set the simulation duration. 

Note that the traffic environment used in this study is simplistic in nature. Specifically, 

a one-way midblock road section is considered. As the driver behaviour models developed in 

this dissertation are for the one-way midblock road section, this simplistic traffic environment 

is sufficient to test whether the developed models are capable of reproducing the fundamental 

diagram. A more complex traffic environment can be simulated in future work.  

7.2.2.1 Vehicle generation 

Vehicles are generated one after the other following a time-headway. The headways are drawn 

from a normal distribution, ( )2/ ( 100),0.5N TotalSimulationTime SimTime+  s following the study 

by Lee (2007). Here, the mean headway decreases as the simulation time ( )SimTime  increases. 

This vehicle generation mechanism helps to simulate the traffic that gradually changes from 

free flow to congested flow. Notably, a normal distribution leaves scope for negative headways. 

However, the probability of generating such negative headways is very small for the 

assumptions we made. Hence, we observed very few instances (that too at large simulation 

times) where negative headways were generated. In such cases, we assumed the headway as 

0.5 s. 
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Note that all vehicles are generated at the start-point of the road section. The type of 

vehicle is randomly assigned using sa random number generated based on the assumed traffic 

composition. Once the vehicle is generated, its physical characteristics (e.g., length and width 

of the vehicle) and operational characteristics (e.g., free-flow speed) are assigned based on its 

vehicle type (according to Table 7.1).  

7.2.2.2 Vehicle placement at the start of the road section 

The following procedure is followed for vehicle placement while simulating HD traffic 

streams.  

1. Vehicle’s lateral position: Since HD traffic streams are simulated, there is no concept 

of lane discipline, and the generated vehicle can take any lateral position on the road. 

Hence, the lateral position for the generated vehicle is assigned randomly within the 

width of the road using a uniform distribution. Note that every generated vehicle scans 

for spaces throughout the entire width of the road. During the scanning, leaders are 

identified. If leaders are present, the availability of safe gaps is checked. Here, the gap 

is calculated as the longitudinal distance between the generated vehicle and its 

immediate lead vehicle and checked against a safe gap as the length of the vehicle. If 

this calculated gap is less than the safe gap, the generated vehicle is shifted laterally 

until a safe gap becomes available. Once this condition is satisfied, the vehicle is placed 

laterally. If not, the generated vehicle is removed from the queue.  

2. Vehicle’s longitudinal position: The generated vehicles are placed at the beginning of 

the road stretch with randomly assigned speeds that follow a normal distribution with 

3 m/s mean and unit variance.  

7.2.2.3 Signal control  

A traffic signal is installed near the end of the road section. The cycle length of the signal is 

manipulated by the user depending on the traffic scenario being tested.  

7.2.3 User Interface  

The user interface allows the traffic simulator to receive commands and instructions from users. 

It also helps with the collection of data from agents. As shown in Figure 7.2, the traffic 

simulator developed in this dissertation has a graphical user interface (GUI). The GUI is 

divided into the main window, control panel, and simulation window. The main window 

depicts the simulation’s spatial organisation. Users can adjust the simulator’s attributes and 
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parameters using a control panel. The simulation window allows one to observe the vehicular 

movements and the traffic flow.  

 

Figure 7.2 Graphical user interface of traffic simulator developed in the dissertation 

7.3 MACROSCOPIC TRAFFIC FLOW PROPERTIES OF THE DRIVER 

BEHAVIOUR MODELS DEVELOPED IN THIS DISSERTATION  

Fundamental diagrams of traffic flow are plotted after aggregating the simulated trajectories. 

A vehicle trajectory describes the spatial position of the vehicle over time along the roadway. 

Using the simulator, the analyst first assumes a hypothetical roadway section with its 

geometrical properties, sets the parameters of the driver behaviour model under examination, 

simulates the trajectories of the vehicles using the model, and finally, measures all relevant 

macroscopic traffic flow quantities. There are different ways to measure flow, density, and 

space mean speed, such as the highway capacity manual (HCM) method, the n-t method, and 

the x-t method based on Edie’s generalised definition (D. Ni, 2007; Sharma et al., 2021). The 

HCM method is based on the definitions of flow, density, and speed and their fundamental 

relationship. The n-t method is based on the cumulative number of vehicles in the cumulative 

number-time (n-t) domain. In contrast, the x-t method estimates the fundamental variables 

using trajectory data. The paper by Ni (2007) discusses each of these methods in detail. Edie’s 

generalised definitions are applied when trajectory data is available to calculate the 

fundamental traffic flow parameters (Edie, 1963; Sharma et al., 2021). Hence, the flow, 
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density, and speed are estimated using Edie’s generalised definitions from simulated 

trajectories in this study. This section discusses Edie’s procedure in detail. 

7.3.1 Simulation Setup  

The driver behaviour models developed in this dissertation were used to generate fundamental 

diagrams for three specific scenarios. Table 7.2 summarises the setting of each of these 

scenarios. 

Table 7.2 Simulation set up for different scenarios 

Parameter Scenario 1 Scenario 2 Scenario 3 

Vehicle type 

proportion  

 

All vehicles are cars  All vehicles are 

motorised two-

wheelers  

Cars = 40 % 

Motorised two-

wheelers = 60 % 

Driver behaviour 

model  

 

Discrete-continuous 

multi-vehicle 

anticipation model 

developed in Chapter 3 

Two-dimensional, 

multi-vehicle 

anticipation-based 

latent class framework 

developed in Chapter 6 

Discrete-continuous 

multi-vehicle 

anticipation model for 

cars and  

two-dimensional, 

multi-vehicle 

anticipation-based 

latent class framework 

for motorised two-

wheelers 

 

Length of the road 1000 m 1000 m 1000 m 

Simulation time 

( )TotalSimTime  

1800 s 1800 s 1800 s 

Vehicle generation  The vehicles are generated with time headways drawn from a normal 

distribution as follows:  2,0.5
100

TotalSimulationTime
N

SimTime

 
 

+ 
. The mean of this 

normal distribution decreases with increasing simulation time ( )SimTime  

Signal control  Three signal cycles are scheduled. The first signal cycle starts at 500 s and 

ends at 600 s. The second signal cycle starts at 1000 s and ends at 1100 s. 

The third signal cycle starts at 1500 s and ends at 1600 s. This signal 

schedule ensures that the traffic simulation can simulate all trends of traffic 

stream densities.   
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Scenario 1 is used to analyse the driver behaviour model developed for car drivers, 

whereas Scenario 2 is used to analyse the driver behaviour model developed for motorised two-

wheelers. In Scenario 3, a heterogeneous traffic stream is simulated that consists of cars and 

motorised two-wheelers using driver behaviour models built for both car and motorised two-

wheeler drivers. In all three scenarios, the length of the road, simulation time and update time 

are considered as 1 KM, 30 minutes, and 1 s, respectively. Table 7.2 also provides the time 

headway distribution used to generate vehicles in all three scenarios. As discussed earlier, a 

traffic signal is installed near the end of the road section. In all scenarios, three signal cycles 

are scheduled to ensure that the traffic simulation can simulate a wide range of traffic stream 

densities.   

7.3.2 Measuring Macroscopic Traffic Flow Variables from Trajectories  

The fundamental traffic flow parameters are estimated from simulated trajectories using Edie’s 

generalised definitions, which use the total time taken, and the distance travelled by each 

vehicle in the longitudinal position-time region for density and flow estimation. The 

longitudinal position-time diagram provided in Figure 7.3 demonstrates Edie’s method. 

  

Figure 7.3 Longitudinal Position-Time diagram for vehicle trajectories  

According to Edie, density is defined as the total time spent by all vehicles in a region A  

divided by the area of A  (refer Eq. (7.7)). Flow is defined as the total distance travelled by all 

vehicles in a region A  divided by the area of A  (refer Eq. (7.8)). Finally, speed is calculated 

as the ratio of the total distance travelled by all vehicles in A  over the total time spent by all 

vehicles in A  (refer Eq. (7.9)).  



 

 

176 

 

 1

Q

q

q

TT

Density
Area

=
=


 (7.7) 

 1

Q

q

q

d

Flow
Area

=
=


 (7.8) 

 1

1

Q

q

q

Q

q

q

d

Speed

TT

=

=

=




 (7.9) 

where, Q  represents the total number of vehicles. qTT  represents the time taken by a vehicle 

q  over a defined rectangular region A . qd  represents the longitudinal distance travelled by 

vehicle q  over the rectangular region A . The quantities qTT , qd , and Area  are provided 

below.  

 ( )( ) ( )( )( ) ( )min , max ,q q

q u u l ld x t x x t x= −  (7.10) 

 ( )( ) ( )( )( ) ( )min , max ,q q

q u u l lTT t x t t x t= −  (7.11) 

 ( ) ( )u l u lArea x x t t= −  −  (7.12) 

where, 
lx  and 

ux  are the lower and upper bounds of A  in x  domain, respectively. 
lt  and 

ut  are the lower and upper bounds of A  in t  domain, respectively. ( )( )q

ux t  and ( )( )q

lx t  are 

the locations of the 
thq  vehicle’s passes at times  

lt  and 
ut , respectively. ( )( )q

ut x  and ( )( )q

lt x  

are the time instances when the 
thq  vehicle passes locations 

lx  and 
ux , respectively. In this 

dissertation, the longitudinal position-time region for simulated trajectories is divided into 

windows of 20 s (along the time axis) and 100 m to 1000 m (along the longitudinal position 

axis), i.e., 20u lt t s− = and 1000 100 900u lx x m− = − = . The first 100 m and 80 s of simulation 

are discarded as a warm-up section and a warm-up period, respectively.  
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7.1.1 Results and Discussion 

The trajectories are generated for each scenario using the developed simulator. Next, Edie’s 

generalised definitions are applied to estimate the speed, flow, and density. Then, the pairwise 

relationship between speed, flow and density are plotted and provided in Figure 7.4-7.6. 

Fundamental traffic flow diagrams are developed for all three scenarios. The patterns 

in these diagrams are similar to those that are typically observed in the real world (as in  Figure 

7.1). Also, similar patterns were reported by Thankappan et al. (2010) and Thankappan and 

Vanajakshi (2015) for Indian traffic conditions. Additionally, we observe that the maximum 

speed from the simulation results is around 60 km/hr, which is the desired speed set for the 

agents in the current traffic simulator. Furthermore, we do not observe inconsistencies in the 

typical density-speed, flow-speed, and density-flow relationships in all three scenarios. For 

instance, low-density values are related to higher speed and lower flow rates, as expected. 

Similarly, we observe that when density increases, flow increases up to a maximum and then 

decreases. All these observations suggest that the driver behaviour models developed in this 

dissertation are able to reflect expected macroscopic traffic stream relationships. These 

observations provide some credence to the models developed in this dissertation. Note that this 

dissertation does not perform stability analysis using the proposed models, which is an 

important avenue for future research. 

 

Figure 7.4 Fundamental diagrams for Scenario 1 
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Figure 7.5 Fundamental diagrams for Scenario 2 

 

Figure 7.6 Fundamental diagrams for Scenario 3 
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CHAPTER 8 CONCLUSIONS AND FUTURE RESEARCH DIRECTIONS 

The last chapter of this thesis re-states the proposed objectives, and the associated research 

questions, recapitulates the findings from chapters 2 to 7 and highlights the research 

contributions from two perspectives: methodological and empirical. Finally, it presents the 

limitations of this thesis and identifies future research directions. 

8.1 RESEARCH OVERVIEW 

Driver behaviour models are widely used in traffic engineering literature and practice for 

understanding and describing drivers’ manoeuvring decisions in vehicular traffic streams. They 

also form the building blocks of traffic microsimulation tools, which are used for traffic flow 

analysis, traffic safety analysis, traffic emission estimation, traffic control studies, etc. Most of 

these models in the literature are developed for homogeneous traffic conditions (typically 

observed in countries such as Australia, the United States, Germany, and the Netherlands). 

However, the heterogeneous, disorderly (HD) traffic conditions observed in the urban areas of 

countries like India differ significantly from homogeneous traffic conditions. More 

specifically, in contrast to homogeneous traffic conditions, HD traffic streams include a wide 

range of vehicle classes with varying physical and operational characteristics, and vehicles 

demonstrate weak to no lane discipline and a large extent of lateral movements.  

A review of the literature on driver behaviour models (in Chapter 2) suggests that there 

has been a substantial amount of previous research on modelling driver behaviour in 

homogeneous traffic streams. There has also been an increasing interest in modelling driver 

behaviour in HD traffic streams. However, there are still several research gaps in this area, as 

identified below (and discussed in detail in earlier chapters): 

• Inadequate consideration of the multi-vehicle anticipation (MVA) effect while 

modelling driver behaviour in HD traffic streams, 

• Limited efforts to consider driver behaviour as a combination of different manoeuvring 

decisions, such as the decision of whether to accelerate, decelerate, or remain in same 

speed (represented as a discrete variable) and the decision of the extent of acceleration 

or deceleration (represented as continuous variables) – as opposed to using a single, 

continuous variable to represent all these facets of driver behaviour,   

• Inadequate attention to (and lack of methods for) modelling drivers’ perception errors 

in MVA-based driver behaviour models, and  
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• Limited attention to incorporating two-dimensional (2D) movement of vehicles in HD 

traffic streams while also considering drivers’ intentions (that are latent to the analyst) 

and the MVA effect.  

In view of the above gaps in the literature, this dissertation set out to develop driver 

behaviour models for HD traffic streams on uninterrupted traffic facilities while considering 

the following aspects –  (1) the MVA behaviour, where drivers’ manoeuvring decisions are 

influenced by multiple vehicles around them, as opposed to a single lead vehicle ahead (2) the 

treatment of driver behaviour as a combination of different manoeuvring decisions, such as the 

decision of whether to accelerate, decelerate, or remain in same speed and the decision of the 

extent of acceleration or deceleration (as opposed to a single, continuous variable representing 

the driver behaviour), (3) the incorporation of stochasticity due to drivers’ perception errors, 

and (4) the consideration of 2D movements and driver’s intentions (latent to the analyst) 

simultaneously while also incorporating MVA behaviour. The specific methodological and 

substantive objectives of the dissertation are mentioned below. 

Methodological objectives (M1 to M4) 

M1: To develop a discrete-continuous choice modelling framework for describing car 

drivers’ longitudinal movements in HD traffic conditions. This objective serves the 

following two purposes: (1) the consideration of the MVA effect while modelling driver 

behaviour in HD traffic streams, and (2) the consideration of the driver’s discrete 

decisions (i.e., the decision of whether to accelerate, decelerate, or maintain a constant 

speed, represented as a discrete variable) and continuous decisions (i.e., the extents of 

acceleration and deceleration, represented as continuous variables) separately but also 

model them simultaneously. 

M2: To enhance the above-mentioned discrete-continuous modelling framework to 

recognise subject vehicle- and driver-specific unobserved factors that influence driver 

behaviour.  

M3: To incorporate drivers’ perception errors for variables describing the traffic 

environment in discrete choice-based models of driver behaviour. And to evaluate two 

different ways of specifying stochasticity due to drivers’ errors in their perception of 

the traffic environment – additive stochasticity and multiplicative stochasticity.  

M4: To develop an MVA-based latent class framework to simultaneously model 2D 

movements of motorised two-wheelers. And to develop a latent class framework to 
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incorporate the MVA effect and the driver’s intentions (those are latent to the analyst) 

along two dimensions – (a) the intent to accelerate, decelerate, or maintain a constant 

speed, and (b) the intent to steer to the left of, right of, or straight along the longitudinal 

direction. 

Substantive objectives (S1 to S5) 

S1: To demonstrate the importance of MVA using the model formulated for objective 

M1 in two different empirical settings – (1) an HD traffic stream setting using a 

trajectory dataset from the city of Chennai, India and (2) a homogeneous traffic stream 

setting using a trajectory dataset from the United States of America (USA). Another 

objective is to compare and contrast car driver behaviour between HD and 

homogeneous traffic conditions using these two trajectory datasets.  

S2: To apply the model formulated for objective M1 to test whether the factors 

influencing the decision to accelerate or decelerate are different (or have a different 

influence on) than the factors influencing the extent of acceleration or deceleration. 

S3: To apply the model formulated for objective M3 to evaluate the importance of 

incorporating drivers’ perception errors in traffic environment variables vis-à-vis 

allowing unobserved heterogeneity in drivers’ response to those variables in driver 

behaviour models. 

S4: To apply the model formulated for objective M4 to test whether the extent of 

cognitive efforts invested for making higher-level decisions (drivers’ intent to 

accelerate, decelerate, or maintain a constant speed, and intent to steer to the left of, 

right of, or straight along the longitudinal direction) are different from those invested 

for lower-level decisions (decisions of exactly how much to accelerate or decelerate 

and which specific angular direction to move along). 

S5: To evaluate the driver behaviour models developed in this dissertation for their 

ability to mimic the macroscopic traffic flow properties of uninterrupted traffic streams 

observed in HD traffic conditions. To achieve this, another objective is to develop a 

traffic simulator for simulating HD traffic streams using the proposed driver behaviour 

models.  
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8.2 METHODOLOGICAL CONTRIBUTIONS 

8.2.1 An MVA-Based Discrete-Continuous Choice Modelling Framework to Model Car 

Driver Behaviour in HD Traffic Streams 

Chapter 3 formulated an MVA-based discrete-continuous choice modelling framework for 

describing car driver behaviour in HD traffic conditions. To incorporate MVA, the concept of 

an influence zone around a vehicle (subject vehicle) was introduced, and it was assumed that 

vehicles within the influence zone influence the subject vehicle’s driving behaviour. Further, 

driving decisions were characterised as a combination of discrete and continuous components. 

The discrete component involved the decision to accelerate, decelerate, or maintain a constant 

speed and the continuous component involved the decision of how much to accelerate or 

decelerate. A copula-based joint modelling framework that allows dependencies between 

discrete and continuous components was proposed. Such a joint modelling framework 

recognises that the discrete and continuous decisions are made simultaneously, and common 

unobserved factors influence both decisions. Additionally, truncated distributions were 

employed for the continuous model components to avoid the prediction of unrealistically high 

acceleration or deceleration values.  

8.2.2 A Panel Data-Based Discrete-Continuous Choice Modelling Framework to Analyse 

Longitudinal Driver Behaviour in Homogeneous and HD Traffic Conditions 

In Chapter 4, we proposed a panel data-based discrete-continuous choice modelling framework 

to analyse car driver behaviour in two disparate trajectory datasets – one from an HD traffic 

stream in India and another from a homogeneous traffic stream in the USA. This panel data-

based model was built on an MVA-based discrete-continuous choice model proposed in 

Chapter 3. The panel data-based framework allows the analyst to isolate the subject vehicle- 

and driver-specific unobserved factors (such as age and aggressiveness) that do not vary across 

different observations of the same vehicle but have an influence on the vehicle’s driver 

behaviour. Doing so helps reduce the confounding effects of such unobserved factors on 

analysing the influence of observed factors (such as relative speeds and spacing between the 

subject vehicle and other vehicles) on driver behaviour. This also helps in reducing the 

confounding effects of unobserved factors on analysing the differences in driving behaviour 

between HD and homogeneous traffic streams.  
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8.2.3 Mixed Multinomial Logit Based Framework to Consider Drivers’ Perception Errors in 

Driver Behaviour Models  

Chapter 5 presented a mixed multinomial logit based framework to represent driver’s 

perception errors in discrete choice models of driver behaviour. This framework helped us 

examine the importance of incorporating perception errors in driver behaviour models, the 

repercussions of ignoring such errors, and an understanding of which variables are perceived 

with a greater uncertainty/error.  

Econometric analysis was undertaken to evaluate two different ways of specifying 

perception errors in the choice environment variables in discrete choice models – (a) additive 

specification and (b) multiplicative specification. It was shown that models with an additive 

error specification run into parameter identification issues when the analyst attempts to 

accommodate perceptions errors in a large number of traffic environment variables. On the 

other hand, models with a multiplicative error specification are not, in theory, saddled with 

such parameter identification problems. The usefulness of the proposed framework with 

multiplicative errors is demonstrated through simulation experiments as well as an empirical 

application for analysing driver behaviour while considering drivers’ errors in perceiving 

traffic environment variables. Empirical results from Chapter 5 suggested that the proposed 

model, with power lognormal distributed multiplicative errors in traffic environment variables, 

outperformed the typically used mixed logit models with random coefficients (uncorrelated 

and correlated) or error components. Further, allowing for perception errors in traffic 

environment variables was found to be more important than allowing unobserved heterogeneity 

in the drivers’ sensitivity to those variables. 

8.2.4 A Two-Dimensional, Multi-Vehicle Anticipation, and Multi-Stimuli Based Latent Class 

Framework to Model Driver Behaviour in HD Traffic Streams 

As discussed in Chapter 6, driving manoeuvres in HD traffic streams involve multifaceted 

decisions such as: (a) the intention to accelerate, decelerate, or maintain a constant speed, (b) 

the extent of intended acceleration or deceleration, (c) the intention to steer to the left of, right 

of, or straight along the traffic flow direction, and (d) the specific angular direction of 

movement. These decisions must be made quickly based on the driver’s perceptions of the 

constantly evolving traffic environment around them. However, from a cognitive science 

standpoint, humans are endowed with a limited amount of cognitive resources such as working 

memory they need to store and process information for making their decisions (Sweller, 1988). 
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Therefore, drivers might allocate their cognitive resources optimally to quickly make their 

manoeuvring decisions. Specifically, given the multifaceted decisions drivers need to make in 

a short timeframe and the complexity of the traffic environment around them, it is plausible 

that they break down their decision-making into manageable steps for cognitive ease. In this 

context, there is scope to explore if analysing drivers’ intents (which are latent to the analyst) 

first, followed by the specific actions they take, can help in filling this gap. For instance, it may 

be that higher-level, strategic decisions – such as the intentions of whether to accelerate, 

decelerate, or maintain a constant speed and whether to steer to the left of, right of, or keep 

straight along the longitudinal direction – are made first, followed by lower-level, tactical 

decisions – such as exactly how much to accelerate or decelerate and which specific angular 

direction to move along. In this context, we conjecture that a greater amount of cognitive effort 

might be invested in making the higher-level, strategic decisions or intentions than that in 

making lower-level, tactical decisions. This is likely because a greater amount of information 

is processed for making higher-level intentions than that for making lower-level decisions. The 

Chapter 6 aims at gathering evidence toward this conjecture using statistical analysis of the 

trajectory data, without necessarily delving into measurements of the cognitive loads exerted 

in making the above-mentioned decisions.  

In view of the above discussion, Chapter 6 formulated a latent class-based driving 

behaviour framework that considers the driver’s strategic intentions (those are latent to the 

analyst) for modelling motorised two-wheeler’s 2D movements while considering the MVA 

effect on these movements in HD traffic conditions. Specifically, the following extensions are 

proposed to a conventional stimulus-response based driving behaviour framework: 

1. The observed 2D movements of a subject vehicle (SV) are represented as a combination 

of the angular direction (or orientation) of movement with respect to the longitudinal 

direction and the magnitude of acceleration or deceleration along the direction.  

2. The observed 2D movements of an SV at a time instance are assumed to be a result of a 

sequential decision-making process of its driver, where higher-level (strategic) decisions 

precede lower-level (tactical) decisions. The higher-level decisions are drivers’ intents 

along the following two dimensions: 

(a) the intent to accelerate, decelerate, or maintain a constant speed, and   

(b) the intent to steer to the left of, right of, or straight along the longitudinal 

direction. 
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The lower-level decisions are the tactical decisions of how much to accelerate or 

decelerate and which specific angular direction to move along.  

A latent class framework is utilised to model drivers’ intents as they are latent to the 

analyst. Conditional on the intents, the lower-level decisions are modelled. The sequential 

decision-making assumption combined with our two-stage modelling framework allows 

us to gather evidence toward our conjecture that the extent of cognitive effort needed for 

making higher-level intents is different from those for making lower-level choices. In the 

absence of measurements of cognitive load, this is achieved by comparing the strength of 

influence of various traffic environment variables on the higher- and lower-level 

decisions. 

3. The MVA effect is accommodated, wherein the driver of an SV is assumed to consider 

stimuli from multiple vehicles within its influence zone for making their intents and 

manoeuvring decisions. 

4. For the lower-level decisions, a multi-stimuli model of acceleration is formulated based 

on the assumption that drivers choose a specific angle of movement that allows them to 

move with the highest (lowest) possible longitudinal acceleration (deceleration) if they 

intend to accelerate (decelerate).  

5. Drivers’ execution errors are modelled as the difference between their intended extent of 

acceleration or deceleration and the executed acceleration values.  

Finally, properties of the multivariate normal distribution are employed to derive the likelihood 

function to estimate the parameters of the proposed model. 

8.3 EMPIRICAL FINDINGS  

In addition to the above-discussed methodological contributions, the substantive contributions 

from this dissertation were in the context of analysing driver behaviour models using vehicular 

trajectory datasets. The following subsections summarise some key findings and contributions 

from the empirical analyses undertaken in this dissertation. 

8.3.1 Importance of Considering MVA in Driver Behaviour Models  

The results presented in Chapters 3 and 4 demonstrated the importance of considering MVA 

for describing driving behaviour in HD traffic conditions as well as homogeneous traffic 

conditions. Specifically, the results lent credence to the idea of an influence zone around the 

vehicle and corroborated our hypothesis that driving behaviour is influenced by multiple 
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vehicles within the influence zone of the subject vehicle. Further, drivers in HD traffic 

conditions not only consider vehicles that are ahead of their vehicle but also consider those 

vehicles that are on either side. At the same time, while drivers’ decision to accelerate and the 

extent of acceleration is governed by multiple vehicles ahead, their decision on the extent of 

deceleration is likely to be affected more by the immediate lead vehicle than other vehicles in 

the influence zone. Such nuanced findings have not been reported by other studies that 

considered MVA in driving behaviour. 

8.3.2 Empirical Findings on Driver’s Discrete and Continuous Decisions 

The results presented in Chapters 3 and 4 supported the notion that the driver behaviour can be 

represented as a set of discrete and continuous decisions, and the factors influencing the 

discrete decisions might be different or may affect the continuous decisions differently. 

Specifically, not all traffic environment variables found to influence the discrete decisions were 

found influential on continuous decisions (or how much to accelerate or decelerate) and vice 

versa. Moreover, the influence of several variables was found to be stronger on the decision to 

accelerate or decelerate than on the decision of how much to accelerate or decelerate. This 

suggested that the discrete and continuous decisions likely require different cognitive efforts 

by drivers and are influenced in different ways by the traffic environment variables. 

8.3.3 Identification and Characterisation of the Influence Zones for Determining Potential 

Leaders to Predict Acceleration/Deceleration Behaviour 

This dissertation introduced the concept of an influence zone which was defined as a 

hypothetical zone within which the surrounding traffic environment, including vehicles, road 

boundaries, stationary traffic control devices, etc., influences driver behaviour. Specifically, 

we assumed a rectangular-shaped influence zone. The reasons behind choosing a rectangular-

shaped influence zone were as follows: a) road boundaries for straight sections can be 

approximated as two edges of a rectangular-shaped influence zone, and b) its simple geometric 

properties provide higher computational tractability. For example, one can easily divide the 

rectangular influence zone into different compartments to examine the effect of different 

vehicles on the subject vehicle. As the vehicle’s longitudinal position shifts to the left or right 

of the roadway width, the influence zone gets truncated accordingly in that direction. 

After an extensive empirical investigation, this dissertation recommended the 

appropriate size of an influence zone for drivers of HD and homogeneous traffic streams. 

Notably, a 60 m length influence zone was found to be more suitable than shorter length zones 



 

 

187 

 

to model driver behaviour in HD traffic conditions. In contrast, a 30 m length influence zone 

was found to be more suitable for homogeneous traffic conditions.  

8.3.4 Car Driver Behaviour in HD and Homogeneous Traffic Streams  

The empirical results presented in Chapter 4 revealed both similarities and differences in car 

driver behaviour between homogeneous traffic and HD traffic conditions’ trajectory data. 

Specifically, in both traffic conditions’ trajectory data, in addition to vehicles ahead of the 

subject vehicle in its lane, vehicles ahead in the adjacent lanes influence its driver behaviour. 

However, side vehicles influence drivers’ decision-making only in HD traffic conditions. The 

insights from Chapter 4 can assist in developing behaviourally realistic driver behaviour 

models specific to homogeneous and HD traffic conditions. Specifically, such considerations 

and the modelling framework presented in Chapter 4 can potentially help in better simulating 

traffic flow in HD traffic conditions. 

8.3.5 Role of Perception Errors in Driver Behaviour  

The newly proposed modelling framework in Chapter 5 provided insights into the role of 

perception errors in driver behaviour. For example, first, the empirical application 

demonstrated that allowing for perception errors in traffic environment variables is more 

important than allowing unobserved heterogeneity in drivers’ responses to those variables. 

Second, greater variation was found in drivers’ perceptions of the traffic environment variables 

with respect to vehicles that are not directly ahead of their vehicles (than those that are ahead). 

This may be because drivers pay greater attention to vehicles directly ahead of their vehicle 

than those that are not ahead. Third, stochasticity due to perception errors for relative 

longitudinal speeds was found to be greater than that for longitudinal space gaps; perhaps 

because drivers perceive relative speeds less precisely than space gaps. Fourth, drivers’ 

perception of lateral gaps between two moving vehicles ahead was associated with greater 

uncertainty than that associated with longitudinal space gaps with respect to any of those 

vehicles. Fifth, as expected, it was difficult to recover variability due to perception errors for 

variables that did not have a significant influence on the choice outcome. 

8.3.6 Insights on Driver Behaviour of Motorised Two-Wheelers in HD Traffic Streams 

The empirical results from Chapter 6 suggested that a driver’s higher-level decisions (intents) 

are not only affected by the immediate lead vehicle but also by vehicles on the left front, right 

front, left side, and right side of the driver’s vehicle, indicating the importance of considering 

the MVA effect. The findings also showed that the microscopic traffic environment factors 
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have a greater impact on drivers’ higher-level intents than on their lower-level decisions. 

Probably, drivers invest greater cognitive resources in making their higher-level, strategic 

intents than what they invest in making the lower-level, tactical decisions. Furthermore, the 

empirical results offer insights into the driving behaviour observed in Indian traffic streams. 

For example, when drivers have an opportunity to pass the slow-moving lead vehicle, they 

often do so on the right side. The proposed framework and the insights from Chapter 6 might 

inform improvements to existing approaches to simulate motorised two-wheeler movements in 

non-lane-based HD traffic streams. 

8.4 LIMITATIONS AND FUTURE RESEARCH DIRECTIONS  

This dissertation provided several methodological advances in modelling driver behaviour in 

HD traffic conditions. The results provided in this dissertation demonstrated that the developed 

driver behaviour models are realistic and robust. However, the work presented in this 

dissertation is not without limitations. The following subsections identify and discuss the 

potential limitations of the proposed work. In doing so, we also identify some future research 

possibilities in this research area.  

8.4.1 Measurement of Drivers’ Cognitive Resource Allocation for Making Complex Driving 

Decisions 

The empirical applications of developed driver behaviour models are used to make informed 

speculations on how drivers might allocate their cognitive resources for making complex 

driving decisions. Note that this dissertation does not measure drivers’ cognitive efforts directly 

but compares the strength of influence of traffic environment variables on their driving 

behaviours to arrive at plausible conclusions on the extent of cognitive resources invested by 

drivers in making different manoeuvring decisions. In this context, it would be useful to device 

experiments to measure drivers’ cognitive resource allocation as it relates to their driving 

behaviour. 

8.4.2 Heterogeneity in the Size and Shape of the Influence Zone  

In this dissertation, we restricted ourselves to a homogeneous and static, rectangular influence 

zone, even though we recognised that the influence zones could be different for homogeneous 

and HD traffic conditions (and explored three different lengths of the rectangular influence 

area for these traffic conditions). However, influence zones can potentially depend on various 

other factors such as the type of the subject vehicle, driver’s characteristics and human factors, 

subject vehicle speed, and traffic stream characteristics such as average speed and density. One 



 

 

189 

 

approach to recognise such heterogeneity and dynamic nature of influence zones is to use a 

latent class framework, where different sizes/shapes of influence zones are probabilistically 

associated with the subject vehicle and driver characteristics, macroscopic traffic stream 

variables, and microscopic (time-dependent) variables such as subject vehicle speed. The 

driving decisions can be modelled conditional on the (latent) influence zones. To do so, 

however, empirical data would be needed from a variety of traffic conditions (representing 

different ranges of traffic speeds and densities), vehicle types, etc. Also, one can explore an 

elliptical shape or a conical shape for the influence zone.  

8.4.3 Comparison of Driver Behaviour in Homogeneous and HD Traffic Streams 

The insights we obtained on the differences in car driver behaviour between HD and 

homogeneous traffic streams may be not only due to different traffic conditions in the two types 

of streams. The differences may also be due to other factors such as driving population 

characteristics, vehicle characteristics, geometry and types of roadway facilities, congestion 

levels, weather, and timing of data collection. The panel data models proposed in Chapter 4 

help control for the confounding effects of unobserved factors (e.g., vehicle- and driver-specific 

factors) that vary across different vehicles in each of the two datasets. However, the models do 

not help control for factors that are different between the two datasets but are not different 

across the vehicles within each dataset. These include, for example, congestion levels and 

traffic composition in the two traffic streams, roadway geometry, and type of facilities. To 

control for the effects of such factors when comparing driving behaviour between HD and 

homogeneous traffic conditions, it is important to analyse a greater variety of trajectory datasets 

from a larger number of locations representing variation in such factors in both HD traffic and 

homogeneous traffic conditions. Until then, the findings on differences in driving behaviour 

ought to be used with caution. Another possibility is to explore driving simulator experiments 

to analyse differences in driving behaviour between HD traffic and homogeneous traffic 

conditions while controlling for other possible confounding factors. 

8.4.4 Disentangling the Variability due to Perception Errors in Traffic Environment 

Variables from the Heterogeneity in Response to these Variables 

Chapter 5 proposed a discrete choice modelling framework that accommodates perception 

errors in choice environment variables that do not vary across choice alternatives. However, 

note that, due to the mathematical equivalence of the proposed modelling framework with the 

mixed logit model, random parameters could be confounded with the errors in the attributes. 
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Such stochasticity in variables is different from unobserved heterogeneity in drivers’ responses 

to those traffic environment variables. Specifying only one of these as random could potentially 

lead to biased parameter estimates. Simultaneous identification of these two from separate 

sources of variability is important in understanding driver behaviour in complex traffic 

environments. Díaz et al. (2015) pointed out that it is very difficult to isolate the unobserved 

heterogeneity from stochasticity in attributes. Hence, it would be useful to explore ways to 

separate the two sources of variability.  

8.4.5 2D Movement Models for Cars and Autorickshaws  

While modelling 2D movement, this dissertation only focused on motorised two-wheelers. The 

modelling framework formulated in Chapter 6 can be employed to model the 2D movement of 

cars and autorickshaws in HD traffic conditions. Also, the formulated framework did not 

consider driver’s perception error in traffic environment variables. The incorporation of 

perception error would help increase the realism of the 2D driver behaviour model.  

8.4.6 Consideration of Human Factors while Modelling Driver Behaviour 

This dissertation only focuses on two human factors – MVA and drivers’ perception errors – 

while modelling driver behaviour. Other human factors, such as aggressiveness and carefulness 

in driving, driving behaviours based on anticipating future actions of other vehicles, etc., are 

not adequately addressed in this dissertation. As importantly, this dissertation reduces driving 

behaviour to the decisions drivers make in the next time step based on the current traffic 

environment. By doing so, the time dynamics of driving over several time steps, such as the 

influence of one’s anticipated future actions on current actions, are not considered. 

8.4.7 Traffic Simulator for HD traffic streams  

The developed traffic simulator in this dissertation has several limitations for simulating HD 

traffic streams. The developed models only consider longitudinal movements for cars and 2D 

movements for motorised two-wheelers. Hence, the current traffic simulator only simulated the 

longitudinal movement of cars and the 2D movements of motorised two-wheelers. 

Furthermore, the traffic simulator did not simulate other vehicle types such as auto-rickshaws, 

buses, heavy vehicles, and light commercial vehicles. These vehicle types constitute a good 

amount of vehicle composition in HD traffic streams, and hence important to simulate them as 

well. Moreover, we observed collisions of vehicles a few times while simulating HD traffic 

streams using the developed traffic simulator. Hence, some heuristics are used to avoid 

collisions. These issues must be addressed in future work.  
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8.4.8 Consideration of Drivers’ Useful Visual Field 

As per Mackworth (1965), “the useful visual field can be defined as the area around the 

fixation point (the point in space on which the eyes are focused) inside which information can 

be perceived.” If the quantity of information to be processed increases, the useful visual field 

decreases (Rogé et al., 2004). For example, the useful visual field decreases if the number of 

vehicles within the visual field increases. Moreover, it decreases with the increase in speed. 

This indicates that the useful visual field will have a strong bearing on the behaviour of drivers 

because it directly influences the stimulus perception by drivers. Therefore, future endeavours 

in building driver behaviour models (specifically MVA-based models) shall consider this 

important factor.   

8.4.9 Data Needs   

We did not find studies focussing on collecting data specifically to capture MVA behaviour, 

probably because most of the time MVA based models are simple extensions of single lead 

vehicle-based models. As revealed in Chapter 2, MVA is not a straightforward process. Before 

incorporating it, one needs to answer how many vehicles a driver considers? What are the 

driver’s focus areas? How to quantify a driver’s useful visual field? How does the useful visual 

field vary for a particular driver? How does MVA change based on the type of subject vehicle 

(bus or car or motorised two-wheelers) and on vehicle classes in front? To answer all these 

questions, it is important to collect detailed driver behaviour data. For instance, researchers 

shall focus on collecting data up with a trap length of 100 m to 500 m road stretch so that 

kinematics of at least a few additional vehicles ahead can be captured. Notably, driving 

simulators offer various advantages, specifically the collection of detailed driver-level data. 

Various scenarios with a varying number of vehicles ahead, different vehicle classes, varied 

placement of vehicles in the driving scene, etc., can be created and tested. Next, eye trackers 

can be utilised to identify driver focus points within the visual field. Combining driving 

simulators and eye-tracking data can assist in a better understanding and modelling of the MVA 

behaviour. 
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A. APPENDIX TO CHAPTER 3 
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The derivation for the expression given in Eq. (3.15) is as follows:  
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The derivation for marginal CDF function of 
qivF is as follows:  
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As defined earlier in the chapter,  *
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Assume that the error terms qj  are IID Gumbel distributed with location parameter 0 and scale 

parameter G  (i.e., ~ Gumbel(0, )qj G  ). Given this assumption,  *

, , ,
max qj

j a d s j i
u

= 
, which 

represents maximum of IID Gumbel random variables, is also Gumbel distributed with the 
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same scale parameter G . Specifically, following Ben-Akiva and Lerman (1985), one can write 
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expression into Eq. (A.4), one can write the following: 
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Since qi  and 
*

j  are identically Gumbel distributed, 
*

qi j −  follows a logistic distribution 

(Ben-Akiva and Lerman, 1985). Therefore, the above expression can be simplified as:  
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Since we normalize 1G =  for identification, one can write ( ) 1 or 
qi

T

v i q

i

i qxF u−  as below:  
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B. APPENDIX TO CHAPTER 4 

Table B.1 Estimation results of the joint models on homogeneous traffic dataset for influence zones of lengths 45 m and 60 m 

Explanatory variables 

Influence zone length ahead of SV = 45 m Influence zone length ahead of SV = 60 m 

Discrete choice# Continuous choice*  Discrete choice# Continuous choice*  

Accn Dccn Accn Dccn Accn Dccn Accn Dccn 

Constant -0.156 (-1.25) -0.120 (-0.79) 0.906 (16.47) 1.122 (14.42) -0.114 (-0.91) -0.065 (-0.42) 0.904 (16.57) 1.136 (14.36) 

Subject vehicle's speed in longitudinal direction (m/s) 0.024 (1.60) 0.075 (5.65) -- 0.011 (1.84) 0.020 (1.35) 0.073 (5.58) -- 0.011 (1.74) 
Space gap in longitudinal direction w.r.t. MF1 (m) 0.020 (3.54) -0.021 (-3.52) 0.005 (2.57) -0.003 (-1.15) 0.019 (3.35) -0.023 (-3.88) 0.005 (2.58) -0.005 (-1.76) 

Relative speed in longitudinal direction w.r.t. MF1 (m/s) 0.411 (13.30) -0.343 (-11.43) 0.065 (5.49) -0.057 (-4.54) 0.419 (13.26) -0.333 (-10.87) 0.061 (5.03) -0.055 (-4.34) 

Subject vehicle has 2 or more lead vehicles in MF compartment** -- -- -- 0.145 (1.82) -- -- -- 0.061 (0.90) 

Space gap in longitudinal direction w.r.t. MF2 (m) -- -- -- -0.006 (-2.51) -- -- -- -0.002 (-1.14) 

Relative speed in longitudinal direction w.r.t. MF2 (m/s) 0.070 (2.79) -0.200 (-7.67) 0.014 (1.55) -0.048 (-4.90) 0.040 (1.77) -0.186 (-7.76) 0.018 (2.30) -0.042 (-4.98) 
Subject vehicle has 1 or more lead vehicles in LF compartment*** -- -- -- -- -- -- -- -- 

Space gap in longitudinal direction w.r.t. LF1 (m) -- -- -- -- -- -- -- -- 

Lateral gap between MF1 and LF1 (m) 0.018 (0.83) -- -- -0.010 (-1.08) 0.020 (0.94) -- -- -0.009 (-0.88) 
Relative speed in longitudinal direction w.r.t. LF1 (m/s) -- -0.007 (-1.08) -- -- -- -0.007 (-1.09) -- -- 

Subject vehicle has 1 or more lead vehicles in RF compartment*** -- -- -- -- -- -- -- -- 

Space gap in longitudinal direction w.r.t. RF1 (m) -- -- -- -- -- -- -- -- 
Lateral gap between MF1 and RF1 (m) -- -- -- -- -- -- -- -- 

Relative speed in longitudinal direction w.r.t. RF1 (m/s) 0.015 (1.34) -- -- -0.006 (-1.21) 0.014 (1.28) -- -- -0.005 (-1.02) 

Subject vehicle has 1 or more side vehicle in LS compartment*** -- -- -- -- -- -- -- -- 

Space gap in lateral direction w.r.t. LS1 (m) -- -- -- -- -- -- -- -- 

Relative speed in longitudinal direction w.r.t. LS1 (m/s) -- -- -- -- -- -- -- -- 

Subject vehicle has 1 or more side vehicle in RS compartment*** -- -- -- -- -- -- -- -- 
Space gap in lateral direction w.r.t. RS1 (m) -- -- -- -- -- -- -- -- 

Relative speed in longitudinal direction w.r.t. RS1 (m/s) -- -- -- -- -- -- -- -- 

Space gap between left edge of the SV and left edge of the road (m) -- 0.011 (2.06) -- -- -- 0.010 (1.88) -- -- 

Scale parameter of regression equations ( )i    
0.625 (43.65) 0.737 (53.38) 

  
0.624 (43.88) 0.739 (54.29) 

Scale parameters for panel effects (  and )i i            

Acceleration 0.206 (3.01) -- 0.208 (3.05) -- 

Deceleration 0.182 (2.82) -- 0.189 (3.02) -- 

Maintain same speed 0.137 (1.36) NA 0.133 (1.29) NA 

Scale parameters of driver-level common error terms ( )i          

Acceleration  0.065 (2.76) 0.065 (2.79) 

Deceleration -- -- 

Copula dependency parameters ( )i    

Acceleration -2.871 (-6.29) -2.853 (-6.25) 
Deceleration -4.377 (-10.85) -4.383 (-10.99) 

Goodness of fit measures                 

Number of parameters 35 35 

Log likelihood -14605.60 -14622.28 
AIC value 29281.20 29314.56 

BIC value 29528.80 29562.16 

LLR value w.r.t. to independent model 351.24 317.87 
Critical chi-square value at 95% CI 7.81 7.81 

Adjusted rho-square 0.102 0.101 

Number of cases 8728 8728 
Number of vehicles 522 522 

Notes: Accn – Acceleration, Dccn – Deceleration, # Maintain same speed is base, *Dependent variable = absolute value of acceleration/deceleration at t s (m/s2), ** One lead vehicle 

is base, *** No vehicle is base, -- the corresponding parameter was dropped from the specification as it was found to be statistically insignificant, NA- Not applicable 
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Table B.2 Estimation results of the joint models on HD traffic dataset for influence zones of lengths 30 m and 45 m 

Explanatory variables 

Influence zone length ahead of SV = 30 m Influence zone length ahead of SV = 45 m 

Discrete choice# Continuous choice*  Discrete choice# Continuous choice*  

Accn Dccn Accn Dccn Accn Dccn Accn Dccn 

Constant 2.246 (5.88) -0.850 (-2.29) 1.257 (14.10) -0.055 (-0.57) 2.018 (5.34) -0.882 (-2.32) 1.182 (12.95) -0.068 (-0.70) 

Subject vehicle's speed in longitudinal direction (m/s) -0.154 (-4.71) 0.211 (7.26) -0.029 (-3.55) 0.078 (12.04) -0.143 (-4.39) 0.212 (7.38) -0.025 (-3.00) 0.079 (12.04) 

Space gap in longitudinal direction w.r.t. MF1 (m) 0.029 (4.12) -0.014 (-2.09) 0.004 (2.22) -0.004 (-2.58) 0.025 (3.66) -0.016 (-2.36) 0.004 (2.04) -0.004 (-2.63) 
Relative speed in longitudinal direction w.r.t. MF1 (m/s) 0.090 (4.66) -0.073 (-3.58) 0.026 (5.46) -0.004 (-0.77) 0.083 (4.38) -0.077 (-3.89) 0.025 (5.31) -0.004 (-0.79) 

Subject vehicle has 2 or more lead vehicles in MF compartment** -- 0.176 (1.99) -- -- -- 0.220 (2.81) -- -- 

Space gap in longitudinal direction w.r.t. MF2 (m) 0.006 (1.62) -- -- -- 0.010 (4.10) -- 0.001 (1.09) -- 
Relative speed in longitudinal direction w.r.t. MF2 (m/s) 0.070 (2.41) -0.036 (-1.33) 0.017 (2.83) -- 0.080 (5.69) -- 0.016 (3.11) -- 

Subject vehicle has 1 or more lead vehicles in LF compartment*** -- 0.306 (2.72) -- -- -- 0.252 (1.92) -- -- 

Space gap in longitudinal direction w.r.t. LF1 (m) -- -0.016 (-3.46) 0.003 (1.56) -- -- -0.011 (-2.94) 0.002 (1.54) -- 
Lateral gap between MF1 and LF1 (m) 0.106 (5.12) -- -- -- 0.108 (5.13) -- -- -- 

Relative speed in longitudinal direction w.r.t. LF1 (m/s) 0.058 (3.20) -0.022 (-1.26) -- -- 0.055 (3.15) -0.021 (-1.24) -- -- 

Subject vehicle has 1 or more lead vehicles in RF compartment*** -- 0.204 (1.89) -0.100 (-2.96) 0.088 (3.61) -- 0.140 (1.29) -0.097 (-2.95) 0.093 (3.71) 
Space gap in longitudinal direction w.r.t. RF1 (m) -- -0.012 (-2.33) 0.002 (1.27) -- -- -0.008 (-2.13) 0.004 (3.16) -- 

Lateral gap between MF1 and RF1 (m) -- -- -- -- -- -- -- -- 

Relative speed in longitudinal direction w.r.t. RF1 (m/s) -- -0.064 (-4.78) 0.021 (4.15) -- -- -0.056 (-4.75) 0.020 (4.19) -- 
Subject vehicle has 1 or more side vehicle in LS compartment*** -- -- -- -- -- -- -- -- 

Space gap in lateral direction w.r.t. LS1 (m) 0.050 (2.45) -- -- -- 0.055 (2.66) -- -- -- 

Relative speed in longitudinal direction w.r.t. LS1 (m/s) -- -0.035 (-3.04) -- -- -- -0.035 (-2.95) -- -- 
Subject vehicle has 1 or more side vehicle in RS compartment*** -0.172 (-2.23) -- -- -- -0.169 (-2.20) -- -- -- 

Space gap in lateral direction w.r.t. RS1 (m) -- -- -- -- -- -- -- -- 
Relative speed in longitudinal direction w.r.t. RS1 (m/s) 0.050 (2.63) -- -- -0.019 (-3.27) 0.048 (2.50) -- -- -0.018 (-3.17) 

Space gap between left edge of the SV and left edge of the road (m) -- -0.102 (-3.95) -- -- -- -0.104 (-3.89) -- -- 

Scale parameter of regression equations ( )i    
0.608 (50.10) 0.579 (55.97) 

  
0.606 (51.63) 0.578 (56.62) 

Scale parameters for panel effects (  and )i i            

Acceleration 0.543 (8.00) -- 0.552 (8.18) -- 
Deceleration 0.397 (4.59) -- 0.388 (4.41) -- 

Maintain same speed -- NA -- NA 

Scale parameters of driver-level common error terms ( )i          

Acceleration  0.143 (7.45) 0.145 (7.73) 
Deceleration 0.187 (12.39) 0.190 (12.58) 

Copula dependency parameters ( )i    

Acceleration -5.205 (-11.19) -5.267 (-11.43) 

Deceleration -5.240 (-12.52) -5.179 (-12.36) 

Goodness of fit measures                 

Number of parameters 48 48 

Log likelihood -10802.09 -10789.16 

AIC value 21700.18 21674.32 
BIC value 22028.56 22002.70 

LLR value w.r.t. to independent model 810.18 836.04 

Critical chi-square value at 95% CI 5.99 5.99 
Adjusted rho-square 0.140 0.141 

Number of cases 6914 6914 

Number of vehicles 760 760 

Accn – Acceleration, Dccn – Deceleration, # Maintain same speed is base, *Dependent variable = absolute value of acceleration/deceleration at t s (m/s2), ** One lead vehicle is 

base, *** No vehicle is base, -- the corresponding parameter was dropped from the specification as it was found to be statistically insignificant, NA- Not applicable 
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Table B.3 Comparison of goodness of fit measures for the models in Chapters 4 and 3  

Goodness of fit 

measures 

Homogeneous traffic conditions 
Heterogeneous disorderly traffic 

conditions 

Model proposed 

in Chapter 4 

Model proposed 

in Chapter 3 

Model proposed 

in Chapter 4 

Model proposed 

in Chapter 3 

Number of parameters 37 34 50 52 

Log likelihood -14554.46 -14574.88 -10768.14 -10931.94 

AIC value 29182.93 29217.77 21636.28 21967.88 

BIC value 29444.68 29458.29 21978.35 22323.63 

LLR value w.r.t. to 

independent model 
453.51 412.66 878.08 550.48 

Critical chi-square value 

at 95% CI 
11.07 5.99 9.49 12.59 

Adjusted rho-square 0.11 0.10 0.14 0.13 

Number of vehicles 522 522 760 760 

Number of cases 8728 8728 6914 6914 
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C. APPENDIX TO CHAPTER 5 

C.1  Estimation of the Proposed Mixed Logit Models with Multiplicative Errors 

The parameters of the proposed ML-ME models can be estimated using the MSL estimation 

routine. To do so, building on Eq. (5.3) for the likelihood expression for an individual driver 

q ’s manoeuvring choice, the likelihood expression for a sample of independent observations 

( 1,2,..., )q Q=  may be written as: 

 ( ) 
1 1 , ,

( , ) ,
qi

Q Q

q qi

q q i a d s

L L L


   
= = =

= =   (B.1) 

where, 1qi =  if the driver of vehicle q  chooses manoeuvring alternative i ; zero otherwise. 

Considering multiplicative perception errors (i.e., 
*

qk qk qkx x = ), the individual likelihood term 

( ),qiL    in the above expression (which is the probability that driver of vehicle q  chooses 

maneuvering alternative i ) may be written as below: 

 ( ) ( ) ( ), , ,
q

qi qi q q q qL L x f d


     =   (B.2) 

where, q  is a vector of all perception error terms ( 1,2,..., )qk k K =  corresponding to qx , 

which is in turn a vector of measurements of choice environment variables ( 1,2,..., )qkx k K= . 

And ( ), ,qi q qL x   is the conditional likelihood function (conditioned on the values of q ) that 

the driver of a vehicle q  makes a manoeuvring choice i , given by the following expression: 
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 (B.3) 

The multivariate integral in the likelihood function of Eq. (B.2) may be simulated to result in 

the following simulated likelihood function as an estimator of ( ),qiL   : 
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where, 
r

q  is the 
thr  draw from the distribution of the vector q of perception error terms and 

R  is the total number of such draws covering the distribution of q . The corresponding 

simulated log-likelihood function ( , )SLL    for the entire data, which is given in the 

expression below, is maximized to obtain the parameters ( , )  :  

 
1 , ,

( , ) ln ( , )
Q

qi qi

q i a d s

SLL SL    
= =

=      (B.5) 

To estimate parameters using the MSL method, we apply quasi-Monte Carlo simulation 

techniques to draw from the distribution of q  for simulating ( , )SLL   . Specifically, 400 sets 

of Halton draws (i.e., 400R = ) were used to simulate q . However, with the distributions 

explored for q  in this study, it was not easy to achieve convergence of the MSL parameter 

estimation routine when numerically computed gradients were used. Therefore, analytical 

gradients of the simulated log-likelihood function were also coded to assist in estimation. Next, 

we present the expressions for analytical gradients of the function  ln ( , )qiSL   . 

For simplicity in notation, denote the simulated likelihood ( , )qiSL    for the driver of 

a vehicle q  choosing a manoeuvring alternative i  as qiSL . Also, rewrite Eq. (B.4) as, 

1

1 r

q

R

qi

r

iSL L
R =

=  , where, 
r

qiL  is the likelihood function value computed at the thr  draw of qk  (i.e., 

at 
r

qk ); written as:
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Using the above notation, the gradient with respect to jk  of the simulated log-

likelihood  ln ( , )qiSL    may be derived as below (derivation details are available with the 

authors): 
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In the above expression, l  is an index for choice alternatives. qC  is the choice set for individual 

driver q . Note that the summation 
:

(.)
q lk jkl C    =

  in the above expression is useful when a 

coefficient jk  is specified to be same across a subset of choice alternatives (although it was 

not necessary to do so in this study). If  jk  is specific to only the 
thj  alternative, then the only 

term in the summation corresponds to the 
thj  alternative. And the indicator variable 1ql =  if 

l i= ; zero otherwise. That is, ql  takes a value 1 when the gradient is being taken with respect 

to a parameter of the chosen alternative. It should also be noted that when thk variable is not a 

stochastic variable, then 1r

qk =  (i.e., 
*

qk qkx x= ).  

The gradient with respect to k  of the simulated log-likelihood is derived as:  
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Here, qC   denotes the subset of choice alternatives for which 
*

qkx  enters the utility function. 

r

qk

k








 

is a partial derivative of the inverse CDF function of the distribution assumed for qk . Table 

D.1 provides expressions of this partial derivative for the distributions explored in this study, 

when their location parameters are set such that the expected value of the distribution is 1. 

Recall that the power lognormal distribution has a power parameter in addition to the variable 

coefficients and the scale parameter. The Weibull and the Fréchet distribution have an 

additional shape parameter. The gradients with respect to those parameters are not presented 

here, since those parameters were fixed for ease of estimation. Gauss mathematical modelling 

software was used to code the simulated likelihood functions and their gradients for parameter 

estimation. 
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Table C.1 Partial derivative of 
r

qk  with respect to 
k  for different distributions of qk  

Distribution of qk  

r

qk

k






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 − − −  +−
 

Rayleigh  1
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Notes: In the above expressions, 
ru is 

thr draw from a uniform [0,1] distribution.  1 .− is inverse CDF function 

of standard normal distribution. To compute the expression ( )1 1
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corresponding to the power lognormal distribution, the integral inside it was first computed numerically. 

Subsequently, the partial derivative was computed numerically using the ‘gradp’ function of Gauss mathematical 

programming software. For the Weibull distribution, partial derivative of 
r

qk  is with respect to 
k , not with 

respect to 
k .    

C.2 Variance-Covariance Matrix for Additive Error Specification   

Consider the additive error specification on traffic environment variables as in Equations (5.7)

and (5.8) . 
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2 2
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Hence, the variance-covariance matrix can be expressed as follows:  
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As alternative 3 is the base alternative, the variance-covariance matrix of error differences can 

be calculated as 'M M =  , where 
1 0 1

0 1 1
M

− 
=  

− 
 .  

 
1 2 3 1 2 3

1 2 3 1 2 3

2 2 2 2 2 2 2 2 2 2 2

1 2 3 1 1 2 2 3 3

2 2 2 2 2 2 2 2 2 2 2

1 1 2 2 3 3 1 2 3

2

2

a a a a d a d a d

a d a d a d d d d

       

       

                

                


 + + + + + +
 =  

+ + + + + +  
 

C.3 Variance-covariance Matrix for Multiplicative Error Specification   

Consider the multiplicative error specification on traffic environment variables as in Equations 

(5.14) and (5.15).  

1 1 1 2 2 2 3 3 3

1 1 1 2 2 2 3 3 3

( ) ( ) ( )

( ) ( ) ( )

qa a q q a q q a q q qa

qd d q q d q q d q q qd

qs qs

x x x

x x x

       

       

 

= + + +

= + + +

=

 

One can write the utility specification as:  

            

0

0

qa a qa

qd d qd

qs qs

U

U

U

 

 



= +

= +

=

 

The elements of the variance-covariance are derived next. 

           

1 1 1 2 2 2 3 3 3

2

1 1 1 2 2 2 3 3 3

2

1 1 1 2 2 2 3 3 3

[ ] [ ( ) ( ) ( ) ]

[( ( ) ( ) ( ) ) ]

( [( ( ) ( ) ( ) )])

qa a q q a q q a q q qa

a q q a q q a q q qa

a q q a q q a q q qa

Var Var x x x

E x x x

E x x x

       

      

      

= + + +

= + + +

− + + +

 

Let 
2

1 1 1 2 2 2 3 3 3[( ( ) ( ) ( ) ) ]a q q a q q a q q qaA E x x x      = + + +  and  

2

1 1 1 2 2 2 3 3 3( [( ( ) ( ) ( ) )])a q q a q q a q q qaB E x x x      = + + + . 

Then, ( )qaVar A B = − . 
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2

1 1 1 2 2 2 3 3 3

2 2 2 2

1 1 1 2 2 2 3 3 3

1 1 1 2 2 2 1 1 1 3 3 3 1 1 1

2 2 2 3 3 3 2 2 2

3 3 3

1

[( ( ) ( ) ( ) ) ]

[( ) ( ) ( ) ( )

2(

)]

a q q a q q a q q qa

a q q a q q a q q qa

a q q a q q a q q a q q a q q qa

a q q a q q a q q qa

a q q qa

a

A E x x x

E x x x

x x x x x

x x x

x

x

      

      

          

      

  



= + + +

= + + +

+ + +

+ +

+

= 2 2 2 2

1 1 2 2 2 3 3 3

1 1 2 2 1 2 1 1 3 3 1 3 1 1 1

2 2 3 3 2 3 2 2 2

3 3 3

[( ) ] [( ) ] [( ) ] [( ) ]

2( [ ] [ ] [ ]

[ ] [ ]

[ ])

q q a q q a q q qa

a q a q q q a q a q q q a q q qa

a q a q q q a q q qa

a q q qa

E x E x E E

x x E x x E x E

x x E x E

x E

     

          

      

  

+ + +

+ + +

+ +

+

 

As discussed earlier, the random error qk  should be specified to have an expected value of one, 

i.e. [ ] 1qkE  = . Further, as 
* /qk qk qkx x = , the random term should only take positive value. We 

assumed that qk  is lognormally distributed with mean one. Hence, 1[ ] 1qE  =  , 2[ ] 1qE  =  and 

1[ ] 1qE  = . In our case, the expected value of a lognormally distributed error component will be 

equal to one if  21
1,2,3

2
k k k  = −  = . This leads to the following conditions on the variances 

of the perception error terms:  

2 2

1 1

2 2

1 2

2 2

1 3

[( ) ] exp( )

[( ) ] exp( )

[( ) ] exp( )

q

q

q

E

E

E







 

 

 

=

=

=

 

Since the kernel error terms qj  ( , , )j a d s=  are assumed to be IID Gumbel error terms with 

mean zero and standard deviation  , 
2 2 2 2[( ) ] [( ) ] [( ) ]qa qd qsE E E    = = =  .  

Further, since qk  are IID lognormal distributed with mean one, one can write,  

          1 2 1 2[ ] [ ] [ ] 1q q q qE E E   = =    

         1 2 1 3 2 3[ ] [ ] [ ] 1q q q q q qE E E     = = =  

          1 1[ ] [ ] [ ] 1 0 0q qa q qaE E E   = =  =  

          1 2 3[ ] [ ] [ ] 0q qa q qa q qaE E E     = = =  



 

 

203 

 

Therefore, 
2 2 2 2 2 2 2

1 1 1 2 2 2 3 3 3

1 1 2 2 1 1 3 3 1 1 3 3

( ) exp( ) ( ) exp( ) ( ) exp( )

2( )

a q a q a q

a q a q a q a q a q a q

A x x x

x x x x x x

         

     

= + + +

+ + +
 and 

2 2 2

1 1 2 2 3 3 1 1 2 2 1 1 3 3 1 1 3 3( ) ( ) ( ) 2( )a q a q a q a q a q a q a q a q a qB x x x x x x x x x        = + + + + +  

Now, one can write  ( )qaVar A B = −  as 

2 2 2 2 2 2 2

1 1 1 2 2 2 3 3 3( ) ( ) [exp( ) 1] ( ) [exp( ) 1] ( ) [exp( ) 1]qa a q a q a qVar x x x          = − + − + − + . 

Next, one can derive the following expression for the expected value of qa ,  

               
1 1 1 2 2 2 3 3 3

1 1 2 2 3 3

[ ] [ ( ) ( ) ( ) ]qa a q q a q q a q q qa

a q a q a q

E E x x x

x x x

       

  

= + + +

= + +
 

Therefore, one can write,  

             

1 1 2 2 3 3

1 1 2 2 3 3

[ ]

[ ]

[ ] 0

qa a q a q a q

qd d q d q d q

qs

E x x x

E x x x

E

   

   



= + +

= + +

=

  

Covariances between each pair of the above terms can be derived as: 

            

( ) ( ) ( )
2 2 2

2 2 2

1 1 1 1 2 2 2 2 3 3 3 3( , ) exp( ) exp( ) exp( )

( , ) 0

( , ) 0

qa qd a d q a d q a d q

qa qs

qd qs

Cov x x x

Cov

Cov

            

 

 

== + +

=

=

 

Given all the above terms, the variance-covariance matrix of the random utility components 

can be written as below:   

                

( ) ( , ) ( , )

( , ) ( ) ( , )

( , ) ( , ) ( )

qa qa qd qa qs

qa qd qd qd qs

qa qs qd qs qs

Var Cov Cov

Cov Var Cov

Cov Cov Var

    

    

    

 
 
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 
 

 

where,  

    

2 2 2 2 2 2 2
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2 2 2 2 2 2 2
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2
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
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As alternative 3 is the base alternative, one can get the error differenced variance-covariance 

matrix 
  as 'M M =  , where 

1 0 1

0 1 1
M

− 
=  

− 
 . 

           
( ) ( ) 2 ( , ) ( , ) ( )

( , ) ( ) ( ) ( ) 2 ( , )

qa qs qa qs qa qd qs

qa qd qs qd qs qd qs

Var Var Cov Cov Var

Cov Var Var Var Cov

      

      

+ − + 
 =  

+ + − 
.  
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C.4 Alternative Distributions Explored for Representing Drivers’ Perception Errors 

Table C.2 Alternative distributions explored for representing drivers’ perception errors 

Distribution 

name  

Density function ( )f Z  Location parameter   

when [ ] 1E Z =  

Inverse CDF function when [ ] 1E Z =  Standard deviation when [ ] 1E Z =  Notes 

Power 

lognormal 

1

ln ln
p

p Z Z

Z

 




 

−

  − −   
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  
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   
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1
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0
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 



−   ( )1

1

0

1/exp 12 ( ) 2p dyy −
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
− 

  
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Z
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



− 
 
 

 
2

2


−  1

2
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2

( )xp u


 − −
+ 

 
  ( ) ( )

2
2 2exp exp exp 1

2


 

 
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  −  


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 
  

  

−  − −    
−     

      
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 

1 1/
( 1)ln(1 ) 1u


   −− − +− +   

2
1 1(1 2 ) (1 )  − −  + −  +

  
 

0, 0, 0

Support:[ , )

  



  


 

Rayleigh  

2

2

e
ln1
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2

Z Z 







− 
 
 

 − 
−  

   

 1
2




−  
2

2ln(1 ) 1u 


 − − + −  
4

2




−
 

0, 0,

Support:[ , )

 



 
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Exponential  2
1

exp
ln Z 

 

 
− 
 

− 
 

  
 

1 −  ln(1 ) 1u − − + −    0, 0,

Support:[ , )

 



 


 

Fréchet 1

exp
Z Z

 
  

  

− − −
− −   

−   
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1
1 1




 
−  − 

 
 

1
1

ln
1

u








 
−  − 


+



−
 

2

2 2 1
1 1 for 2

otherwise

 
 

      
  − −  −       

       




 

0, , 0

Support:[ , )

  



 −   


 

Notes: This is a modified version of a similar table provided in Bhat and Lavieri (2018). Lognormal distribution is a special case of power lognormal distribution when the latter’s shape parameter p is set to 1. Weibull distribution collapses 

to exponential distribution when the former’s shape parameter ( ) is equal to 1. Weibull collapses to Rayleigh when its shape parameter 2 =  and scale parameter ( )  is equal to 2 . Shape parameter of Fréchet distribution is 

denoted by  . Support for the power lognormal distribution (and lognormal distribution) is the strictly positive semifinite interval (0,∞). Support for Weibull, Rayleigh, Exponential, and Frechet distributions is [µ,∞), where µ is the 

minimum value. 
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Table C.3 Estimation results of MNL, ML-RC-PLN, and ML-CRC-PLN models* 

Explanatory variables in the utility functions 

MNL model ML-RC-PLN model ML-CRC-PLN model 

Acceleration 

utility  

Deceleration 

utility  

Acceleration 

utility  

Deceleration 

utility  

Acceleration 

utility  

Deceleration 

utility  

Constant 1.824 (7.87) -0.481 (-2.21) 1.805 (7.51) -0.792 (-2.98) 1.912 (7.38) -0.937 (-4.13) 

Subject vehicle (SV) longitudinal speed (m/s) -0.065 (-3.31) 0.177 (9.89) -0.062 (-3.08) 0.227 (8.77) -0.077 (-3.73) 0.175 (9.78) 

Traffic environment variables with respect to MF1 (first vehicle in MF) at t-0.5 s 
      

Space gap in longitudinal direction (m) 0.010 (1.88) -0.016 (-3.21) 0.011 (2.15) -2.825 (-6.48) 0.010 (1.71) -0.017 (-3.15) 

Relative speed in longitudinal direction (m/s) 0.087 (4.71) -0.143 (-7.78) 0.075 (4.01) -0.788 (-4.87) -1.346 (-4.53) -0.991 (-3.72) 

Traffic environment variables with respect to MF2 (second vehicle in MF) at t-0.5 s 
      

Subject vehicle has 2 or more lead vehicles (One lead vehicle is base) -0.670 (-4.37) -- -0.702 (-4.31) -- -0.706 (-3.88) -- 

Space gap in longitudinal direction (m) 0.020 (3.01) -- 0.020 (2.81) -- 0.020 (2.66) -- 

Relative speed in longitudinal direction (m/s) 0.112 (4.55) -0.041 (-1.73) 0.099 (3.82) -0.078 (-2.66) 0.114 (4.21) -0.044 (-1.72) 

Traffic environment variables with respect to LF1 (first vehicle in LF) at t-0.5 s 
      

Subject vehicle has 1 or more lead vehicles (No lead vehicle is base) -- 0.393 (4.13) -- 0.431 (3.79) -- -- 

Space gap in longitudinal direction (m) -- -0.011 (-3.10) -- -0.013 (-3.07) -- -0.006 (-1.54) 

Lateral gap between MF1 and LF1 (m) 0.049 (2.03) -0.034 (-1.33) 0.050 (2.05) -0.040 (-1.40) 0.056 (2.90) -- 

Relative speed in longitudinal direction (m/s) 0.071 (6.98) -- 0.077 (6.83) -- 0.077 (6.76) -- 

Traffic environment variables with respect to RF1 (first vehicle in RF) at t-0.5 s 
      

Subject vehicle has 1 or more lead vehicles (No lead vehicle is base) -- -- -- -- -- 0.241 (4.43) 

Space gap in longitudinal direction (m) -- -- -- -- -- -- 

Lateral gap between MF1 and RF1 (m) -- -- -- -- -- -- 

Relative speed in longitudinal direction (m/s) 0.058 (4.96) -- 0.062 (4.86) -- 0.059 (4.48) -- 

Traffic environment variables with respect to LS1 (first vehicle in LS) at t-0.5 s 
      

Subject vehicle has 1 or more side vehicle (No side vehicle is base) -0.139 (-1.80) -- -0.181 (-2.17) -- -0.121 (-1.35) -- 

Lateral space gap (m) 0.067 (3.03) -- 0.082 (3.39) -- 0.071 (2.74) -- 

Relative speed in longitudinal direction (m/s) -- -- -- -- -- -- 

Traffic environment variables with respect to RS1 (first vehicle in RS) at t-0.5 s 
      

Subject vehicle has 1 or more side vehicle (No side vehicle is base) -- -- -- -- -0.113 (-1.69) -0.014 (.) 

Lateral space gap (m) -- -- -- -- -- -- 

Relative speed in longitudinal direction (m/s) -- -- -- -- -- -- 

Position of subject vehicle (SV) at t-0.5 s 
      

Space gap between left edge of the SV and left edge of the road (m) -- -0.084 (-6.09) -- -0.107 (-6.23) -- -- 
Notes: *t-statistic for each estimated parameter is reported in parentheses next to it. Maintain same speed is the base alternative. -- the parameter was dropped from the specifications as it was insignificant.  

 



 

 

207 

 

Table C.4 Estimated scale parameters of random coefficients in ML-RC-PLN and ML-CRC-PLN models* 

Explanatory variables in the utility functions 

ML-RC-PLN model ML-CRC-PLN model 

Acceleration 

utility  

Deceleration 

utility  

Acceleration 

utility  

Deceleration 

utility  

Constant # # # # 

Subject vehicle (SV) longitudinal speed (m/s) # # # # 

Traffic environment variables with respect to MF1 (first vehicle in MF) at t-0.5 s 
    

Space gap in longitudinal direction (m) -- 3.687 (4.19)** -- -- 

Relative speed in longitudinal direction (m/s) -- 2.036 (3.69)** 3.553 (2.85)**** 1.710 (2.89)**** 

Traffic environment variables with respect to MF2 (second vehicle in MF) at t-0.5 s 
    

Subject vehicle has 2 or more lead vehicles (One lead vehicle is base) # # # # 

Space gap in longitudinal direction (m) -- -- -- -- 

Relative speed in longitudinal direction (m/s) -- -- -- -- 

Traffic environment variables with respect to LF1 (first vehicle in LF) at t-0.5 s 
    

Subject vehicle has 1 or more lead vehicles (No lead vehicle is base) # # # # 

Space gap in longitudinal direction (m) -- -- -- -- 

Lateral gap between MF1 and LF1 (m) -- -- -- -- 

Relative speed in longitudinal direction (m/s) -- -- -- -- 

Traffic environment variables with respect to RF1 (first vehicle in RF) at t-0.5 s 
    

Subject vehicle has 1 or more lead vehicles (No lead vehicle is base) # # # # 

Space gap in longitudinal direction (m) -- -- -- -- 

Lateral gap between MF1 and RF1 (m) -- -- -- -- 

Relative speed in longitudinal direction (m/s) -- -- -- -- 

Traffic environment variables with respect to LS1 (first vehicle in LS) at t-0.5 s 
    

Subject vehicle has 1 or more side vehicle (No side vehicle is base) # # # # 

Lateral space gap (m) -- -- -- -- 

Relative speed in longitudinal direction (m/s) -- -- -- -- 

Traffic environment variables with respect to RS1 (first vehicle in RS) at t-0.5 s 
    

Subject vehicle has 1 or more side vehicle (No side vehicle is base) # # # # 

Lateral space gap (m) -- -- -- -- 

Relative speed in longitudinal direction (m/s) -- -- -- -- 

Position of subject vehicle (SV) at t-0.5 s 
    

Space gap between left edge of the SV and left edge of the road (m) # # # # 
Notes: *t-statistic for each estimated parameter is reported in parentheses next to it. ** Power value is fixed at 2.5. **** Power value is fixed at 2.5 and estimated value of rho (t- statistic) is 1.000 (79.50). -- the parameter 

was dropped from the specifications as it was insignificant, # the corresponding parameter was not considered as random coefficient. 
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